Food Analytical Methods

, Volume 8, Issue 10, pp 2515–2523 | Cite as

An Optimized Method for the Quantification of Isoflavones in Dry Soy Extract Containing Products

  • Dezső Csupor
  • Júlia Bognár
  • János Karsai


Isoflavones, a class of flavonoids with estrogen-like activity, are present in the human diet mainly derived from soy-based foods. Soy isoflavones (namely genistein, daidzein, and glycitein and their derivatives) and concentrates have primarily been investigated for their ability to prevent sex hormone-dependent cancers and cardiovascular problems. Several studies demonstrated that many of the biological effects of soy are due to isoflavones. The aim of our study was to develop a simple method for the determination of isoflavones in dry soy extract containing products. Since biological effects of soy isoflavones depend upon aglycone forms, extracts were hydrolyzed to gain isoflavone aglycones. To optimize the extraction and hydrolysis of isoflavones, the effect of HCl concentration (1.5–6 N), hydrolysis time (25–210 min), and temperature (30–100 °C) on total isoflavone aglycone content was studied using an RP-HPLC-DAD method. By mathematical fitting and optimization methods, optimum hydrolysis conditions for maximizing the quantification of isoflavones were determined (t = 96 min, cHCl = 4.9 N, T = 80 °C). The experimentally verified model has a good coefficient of R 2 (0.9928), and the recovery of isoflavones was 97.81–102.76 %. The developed method allows reliable and maximum determination of isoflavones in dry soy extract containing products. Based on this method, six soy extract containing products were analyzed. Our experiments revealed significant variations in the isoflavone content and composition. These results highlight the necessity to clearly specify the isoflavone composition of soy products.


Glycine max Soy Isoflavone HPLC Genistein Daidzein Glycitein 



This work was supported by the New Hungary Development Plan projects TÁMOP-4.1.1.C-12/1/KONV-2012-0014, TÁMOP-4.2.2.A-11/1/KONV-2012-0073, and the Hungarian National Foundation for Scientific Research Grant No. K109782. The support of Leviatán Ltd. is gratefully acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

Dezső Csupor declares no conflict of interest.

Júlia Bognár declares no conflict of interest.

János Karsai declares no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.


  1. Achouri A, Boye JI, Belanger D (2005) Soybean isoflavones: efficacy of extraction conditions and effect of food type on extractability. Food Res Int 38:1199–1204. doi: 10.1016/j.foodres.2005.05.005 CrossRefGoogle Scholar
  2. Adlercreutz H, Mazur W (1997) Phyto-oestrogens and western diseases. Ann Med 29:95–120CrossRefGoogle Scholar
  3. Boniglia C, Carratù B, Gargiulo R, Giammarioli S, Mosca M, Sanzini E (2009) Content of phytoestrogens in soy-based dietary supplements. Food Chem 115:1389–1392. doi: 10.1016/j.foodchem.2009.01.062 CrossRefGoogle Scholar
  4. Chen LJ, Zhao X, Plummer S, Tang J, Games DE (2005) Quantitative determination and structural characterization of isoflavones in nutrition supplements by liquid chromatography–mass spectrometry. J Chromatogr A 1082:60–70. doi: 10.1016/j.chroma.2005.03.066 CrossRefGoogle Scholar
  5. Chen L, Zhao X, Fang L, Games DE (2007) Quantitative determination of acetyl glucoside isoflavones and their metabolites in human urine using combined liquid chromatography–mass spectrometry. J Chromatogr A 1154:103–110. doi: 10.1016/j.chroma.2007.03.010 CrossRefGoogle Scholar
  6. Chiang W, Shih C, Chu Y (2001) Optimization of acid hydrolysis conditions for total isoflavones analysis in soybean hypocotyls by using RSM. Food Chem 72:499–503. doi: 10.1016/S0308-8146(00)00253-3 CrossRefGoogle Scholar
  7. da Costa César I, Braga FC, Soares CDV, de Aguiar Nunan E, Pianetti GA, Condessa FA, Campos LMM (2006) Development and validation of a RP-HPLC method for quantification of isoflavone aglycones in hydrolyzed soy dry extracts. J Chromatogr B 836:74–78. doi: 10.1016/j.jchromb.2006.03.030 CrossRefGoogle Scholar
  8. Dentith S, Lockwood B (2008) Development of techniques for the analysis of isoflavones in soy foods and nutraceuticals. Curr Opin Clin Nutr Metab Care 11:242–247. doi: 10.1097/MCO.0b013e3282fa15c9 CrossRefGoogle Scholar
  9. Fiechter G, Raba B, Jungmayr A, Mayer HK (2010) Characterization of isoflavone composition in soy-based nutritional supplements via ultra performance liquid chromatography. Anal Chim Acta 672:72–78. doi: 10.1016/j.aca.2010.04.004 CrossRefGoogle Scholar
  10. Fiechter G, Opacak I, Raba B, Mayer HK (2013) A new ultra-high pressure liquid chromatography method for the determination of total isoflavone aglycones after enzymatic hydrolysis: application to analyze isoflavone levels in soybean cultivars. Food Res Int 50:586–592CrossRefGoogle Scholar
  11. Fogliatto DK, Barbosa AMJ, Ferreira VS (2010) Voltammetric determination of the phytoestrogen genistein in soy flours and soy based supplements using cationic surfactant cetyltrimetylammonium bromide. Colloids Surf B Biointerfaces 78:243–249. doi: 10.1016/j.colsurfb.2010.03.007 CrossRefGoogle Scholar
  12. Genovese MI, Barbosa AC, Pinto Mda S, Lajolo FM (2007) Commercial soy protein ingredients as isoflavone sources for functional foods. Plant Foods Hum Nutr 62:53–58. doi: 10.1007/s11130-007-0041-0 CrossRefGoogle Scholar
  13. Griffith AP, Collison MW (2001) Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography–mass spectrometry. J Chromatogr A 913:397–413. doi: 10.1016/S0021-9673(00)01077-3 CrossRefGoogle Scholar
  14. Klejdus B, Vacek J, Adam V, Zehnálek J, Kizek R, Trnková L, Kubán V (2004) Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. J Chromatogr B 806:101–111. doi: 10.1016/j.jchromb.2004.03.044 CrossRefGoogle Scholar
  15. Klejdus B, Vacek J, Benesova L, Kopecky J, Lapcik O, Kuban V (2007) Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts. Anal Bioanal Chem 389:2277–2285. doi: 10.1007/s00216-007-1606-3 CrossRefGoogle Scholar
  16. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263Google Scholar
  17. Micke GA, Fujiya NM, Tonin FG, de Oliveira Costa AC, Tavares MFM (2006) Method development and validation for isoflavones in soy germ pharmaceutical capsules using micellar electrokinetic chromatography. J Pharm Biomed Anal 41:1625–1632. doi: 10.1016/j.jpba.2006.03.012 CrossRefGoogle Scholar
  18. Nurmi T, Mazur W, Heinonen S, Kokkonen J, Adlercreutz H (2002) Isoflavone content of the soy based supplements. J Pharm Biomed Anal 28:1–11. doi: 10.1016/S0731-7085(01)00612-4 CrossRefGoogle Scholar
  19. Rostagno MA, Palma M, Barroso CG (2007) Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Anal Chim Acta 597:265–272. doi: 10.1016/j.aca.2007.07.006 CrossRefGoogle Scholar
  20. Rostagno MA, Villares A, Guillamon E, Garcia-Lafuente A, Martinez JA (2009) Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chromatogr A 1216:2–29. doi: 10.1016/j.chroma.2008.11.035 CrossRefGoogle Scholar
  21. Rybak ME, Parker DL, Pfeiffer CM (2008) Determination of urinary phytoestrogens by HPLC–MS/MS: a comparison of atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). J Chromatogr B 861:145–150. doi: 10.1016/j.jchromb.2007.11.013 CrossRefGoogle Scholar
  22. Saracino MA, Raggi MA (2010) Analysis of soy isoflavone plasma levels using HPLC with coulometric detection in postmenopausal women. J Pharm Biomed Anal 53:682–687. doi: 10.1016/j.jpba.2010.06.001 CrossRefGoogle Scholar
  23. Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76:447–453Google Scholar
  24. Song T, Barua K, Buseman G, Murphy PA (1998) Soy isoflavone analysis: quality control and a new internal standard. Am J Clin Nutr 68:1474S–1479SGoogle Scholar
  25. Stuertz M, Lander V, Schmid W, Winterhalter P (2008) Quantitative determination of isoflavones in soy based nutritional supplements by high-performance liquid chromatography. J Verbr Lebensm 3:127–136. doi: 10.1007/s00003-008-0340-x CrossRefGoogle Scholar
  26. van Beek TA, van Veldhuizen A, Lelyveld GP, Piron I, Lankhorst PP (1993) Quantitation of bilobalide and ginkgolides A, B, C and J by means of nuclear magnetic resonance spectroscopy. Phytochem Anal 4:261–268. doi: 10.1002/pca.2800040604 CrossRefGoogle Scholar
  27. Wang CC, Prasain JK, Barnes S (2002) Review of the methods used in the determination of phytoestrogens. J Chromatogr B 777:3–28CrossRefGoogle Scholar
  28. Wu J, Muir AD (2010) Isoflavone during protease hydrolysis of defatted soybean meal. Food Chem 118:328–332. doi: 10.1016/j.foodchem.2009.04.129 CrossRefGoogle Scholar
  29. Xiao M, Ye J, Tang X, Huang Y (2011) Determination of soybean isoflavones in soybean meal and fermented soybean meal by micellar electrokinetic capillary chromatography (MECC). Food Chem 126:1488–1492. doi: 10.1016/j.foodchem.2010.11.168 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PharmacognosyUniversity of SzegedSzegedHungary
  2. 2.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations