Food Analytical Methods

, Volume 8, Issue 1, pp 58–69 | Cite as

Classification of Juniper-Flavoured Spirit Drinks by Multivariate Analysis of Spectroscopic and Chromatographic Data

  • Jana SádeckáEmail author
  • Veronika Uríčková
  • Katarína Hroboňová
  • Pavel Májek


This study compares the use of UV absorption, excitation–emission matrix (EEM) fluorescence and synchronous fluorescence spectroscopy and HPLC with fluorescence detection combined with principal component analysis (PCA), parallel factor analysis (PARAFAC) and linear discriminant analysis (LDA) for distinguishing between commercial samples of Slovak, Belgian, German, Czech and British juniper-flavoured spirit drinks. Overall, 97 %, 88 % and 79 % of samples were properly classified by applying the LDA to the first five principal components of the PCA performed on the synchronous fluorescence spectra (constant wavelength difference 10 nm, 250–450 nm), UV absorption spectra (250–325 nm) and the areas of eight common HPLC peaks, respectively. EEM fluorescence spectroscopy could not discriminate British drinks, while HPLC failed to discriminate Belgian samples. When the areas of eight common HPLC peaks were used as model parameters instead of the five PCs initially used in LDA, the method accuracy was enhanced significantly and 97 % of predicting samples were properly classified.


Beverage Juniper drinks Fluorescence UV absorption spectroscopy HPLC Chemometrics 



This work was supported by the Slovak Research and Development Agency under the contract no. APVV-0797-11.

Conflict of Interest

Jana Sádecká declares that she has no conflict of interest. Veronika Uríčková declares that she has no conflict of interest. Katarína Hroboňová declares that she has no conflict of interest. Pavel Májek declares that he has no conflict of interest. This article does not contain any studies with human or animal subjects.


  1. Adams MJ (1995) Chemometrics in analytical spectroscopy. The Royal Society of Chemistry, LetchworthGoogle Scholar
  2. Arancibia JA, Boschetti CE, Olivieri AC, Escandar GM (2008) Screening of oil samples on the basis of excitation–emission room-temperature phosphorescence data and multiway chemometric techniques. Introducing the second-order advantage in a classification study. Anal Chem 80:2789–2798CrossRefGoogle Scholar
  3. Bettin SM, Isique WD, Franco DW, Andersen ML, Knudsen S, Skibsted LH (2002) Phenols and metals in sugar-cane spirits. Quantitative analysis and effect on radical formation and radical scavenging. Eur Food Res Technol 215:169–175CrossRefGoogle Scholar
  4. Bro R (1997) PARAFAC. Tutorial and applications. Chemometr Intell Lab Syst 38:149–171CrossRefGoogle Scholar
  5. Cardeal ZL, Marriott PJ (2009) Comprehensive two-dimensional gas chromatography–mass spectrometry analysis and comparison of volatile organic compounds in Brazilian cachaça and selected spirits. Food Chem 112:747–755CrossRefGoogle Scholar
  6. Clifford MN, Wu WG, Kirkpatrick J, Kuhnert N (2007) Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MS. J Agric Food Chem 55:929–936CrossRefGoogle Scholar
  7. Divya O, Mishra AK (2007) Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel–kerosene mixtures: a comparative study. Anal Chim Acta 592:82–90CrossRefGoogle Scholar
  8. Dufour E, Letort A, Laguet A, Lebecque A, Serra JN (2006) Investigation of variety, typicality and vintage of French and German wines using front-face fluorescence spectroscopy. Anal Chim Acta 563:292–299CrossRefGoogle Scholar
  9. European Union (EC) (2008) Regulation (EC) No. 110/2008 of the European Parliament and of the Council of 15 January 2008 on the definition, description, presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC) No. 1576/89. OJEU L39(51):16–54Google Scholar
  10. Gonny M, Cavaleiro C, Salgueiro L, Casanova J (2006) Analysis of Juniperus communis subsp. alpina needle, berry, wood and root oils by combination of GC, GC/MS and 13C-NMR. Flavour Fragr J 21:99–106CrossRefGoogle Scholar
  11. Innocenti M, Michelozzi M, Giaccherini C, Ieri F, Vincieri FF, Mulinacci N (2007) Flavonoids and biflavonoids in Tuscan berries of Juniperus communis L.: detection and quantitation by HPLC/DAD/ESI/MS. J Agric Food Chem 55:6596–6602CrossRefGoogle Scholar
  12. Janáčová A, Špánik I, Jakubík T (2010) Comparison of VOC composition of fruit flavoured alcoholic beverages originated from Slovak Republic using GCxGC-TOFMS. In: Abstract Book: 34th International Symposium on Capillary Chromatography and 7th GC × GC Symposium 2010, Riva del Garda, Italy, I.O.P.M.S. vzw, Kennedypark 26, Kortrijk, BelgiumGoogle Scholar
  13. Janáčová A, Jakubík T, Pažitná A, Špánik I (2011) The comparison of VOC composition of juniper favored spirit drinks from various EU countries using GC-TOFMS. In: Joint Congress 2011 including 35th ISCC, 26th MSB and 8th GC × GC Symposium, May 1–5, 2011, San Diego, USAGoogle Scholar
  14. Liang X, Wu H, Su W (2013) A Rapid UPLC-PAD fingerprint analysis of Chrysanthemum morifolium Ramat combined with chemometrics methods. Food Anal Methods. doi: 10.1007/s12161-013-9618-4, Published online: 05 May 2013Google Scholar
  15. Mac Namara K, Howell J, Huang Y, Robbat A Jr (2007) Analysis of gin essential (botanical and citrus) oil mixtures by multidimensional and one-dimensional gas chromatography/mass spectrometry with spectral deconvolution. J Chromatogr A 1164:281–290CrossRefGoogle Scholar
  16. Mateo CR, Prieto M, Micol V, Shapiro S, Villalain J (2000) A fluorescence study of the interaction and location of (+)-totarol, a diterpenoid bioactive molecule, in model membranes. Biochim Biophys Acta 1509:167–175CrossRefGoogle Scholar
  17. McDonnell E, Hulin-Bertaud S, Sheehan EM, Delahunty CM (2001) Development and learning process of a sensory vocabulary for the odor evaluation of selected distilled beverages using descriptive analysis. J Sens Stud 16:2001425–2001444Google Scholar
  18. Miceli N, Trovato A, Marino A, Bellinghieri V, Melchini A, Dugo P, Cacciola F, Donato P, Mondello L, Güvenç A, De Pasquale R, Taviano MF (2011) Phenolic composition and biological activities of Juniperus drupacea Labill. berries from Turkey. Food Chem Toxicol 49:2600–2608CrossRefGoogle Scholar
  19. Mignani AG, Ciaccheri L, Gordillo B, Mencaglia AA, González-Miret ML, Heredia FJ, Culshaw B (2012) Identifying the production region of single-malt Scotch whiskies using optical spectroscopy and pattern recognition techniques. Sensors Actuators B 171–172:458–462CrossRefGoogle Scholar
  20. Och M, Och A, Ciesla L, Kocki J, Bogucka-Kocka A (2013) Screening various Juniperus species for the occurrence of umbelliferone by means of bivariate multiple development thin-layer chromatography. J Planar Chromatogr Mod TLC 26:421–426CrossRefGoogle Scholar
  21. Reis MM, Biloti DN, Ferreira MMC, Pessine FBT, Teixeira GM (2001) PARAFAC for spectral curve resolution: a case study using total luminescence in human dental tartar. Appl Spectrosc 55:847–851CrossRefGoogle Scholar
  22. Rinnan A, Andersen CM (2005) Handling of first-order Rayleigh scatter in PARAFAC modelling of fluorescence excitation emission data. Chemom Intell Lab Syst 76:91–99CrossRefGoogle Scholar
  23. Riu-Aumatell M, Vichi S, Mora-Pons M, López-Tamames E, Buxaderas S (2008) Sensory characterization of dry gins with different volatile profiles. J Food Sci 73:286–293CrossRefGoogle Scholar
  24. Robbat J, Kowalsick A, Howell A (2011) Tracking juniper berry content in oils and distillates by spectral deconvolution of gas chromatography/mass spectrometry data. J Chromatogr A 1218:5531–5541CrossRefGoogle Scholar
  25. Sádecká J, Tóthová J (2010) Determination of caramel in non-aged mixed wine spirits by synchronous fluorescence spectroscopy. Eur Food Res Technol 230:797–802CrossRefGoogle Scholar
  26. Sádecká J, Tóthová J (2012) Spectrofluorimetric determination of ellagic acid in brandy. Food Chem 135:893–897CrossRefGoogle Scholar
  27. Sádecká J, Tóthová J, Májek P (2009) Classification of brandies and wine distillates using front face fluorescence spectroscopy. Food Chem 117:491–498CrossRefGoogle Scholar
  28. Sádecká J, Májek P, Píš Ľ (2010) Synchronous fluorescence spectroscopy for classification of juniper-flavoured spirit drinks. Luminescence 25:224–225Google Scholar
  29. Song LX, Wang HM, Xu P, Yang Y, Zhang ZQ (2008) Experimental and theoretical studies on the inclusion complexation of syringic acid with α-, β-, γ-, and heptakis(2,6-di-O-methyl)- β-cyclodextrin. Chem Pharm Bull 56:468–474CrossRefGoogle Scholar
  30. Stassi V, Verykokidou E, Loukis A, Harvala C (1998) Polyphenolic compounds from the leaves of Juniperus oxycedrus L. subsp. macrocarpa (Sm.) Ball. Pharm Acta Helv 72:311–312CrossRefGoogle Scholar
  31. Surribas A, Amigo JM, Coello J, Montesinos JL, Valero F, Maspoch S (2006) Parallel factor analysis combined with PLS regression applied to the on-line monitoring of Pichia pastoris cultures. Anal Bioanal Chem 385:1281–1288CrossRefGoogle Scholar
  32. Tchaikovskaya ON, Mikhaleva IA (2006) Optics and spectroscopy. Phenol and anisol fluorescence quenching in aqueous micellar solutions. Russ Phys J 49:427–434CrossRefGoogle Scholar
  33. Vichi S, Riu-Aumatell M, Mora-Pons M, Buxaderas S, Pez-Tamames EL (2005) Characterization of volatiles in different dry gins. J Agric Food Chem 53:10154–10160CrossRefGoogle Scholar
  34. Vichi S, Riu-Aumatell M, Mora-Pons M, Guadayol JM, Buxaderas S, López-Tamames E (2007) HS-SPME coupled to GC/MS for quality control of Juniperus communis L. berries used for gin aromatization. Food Chem 105:1748–1754CrossRefGoogle Scholar
  35. Vichi S, Riu-Aumatell M, Buxaderas S, López-Tamames E (2008) Assessment of some diterpenoids in commercial distilled gin. Anal Chim Acta 628:222–229CrossRefGoogle Scholar
  36. Villa C, Gambaro R, Mariani E, Dorato S (2007) High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal 44:755–762CrossRefGoogle Scholar
  37. Zhan H, Jiang ZT, Wang Y, Li R, Dong TS (2008) Molecular microcapsules and inclusion interactions of eugenol with β-cyclodextrin and its derivatives. Eur Food Res Technol 227:1507–1513CrossRefGoogle Scholar
  38. Žiak Ľ, Sádecká J, Májek P, Hroboňová K (2013) Simultaneous determination of phenolic acids and scopoletin in brandies using synchronous fluorescence spectrometry coupled with partial least squares. Food Anal Methods. doi: 10.1007/s12161-013-9656-y Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jana Sádecká
    • 1
    Email author
  • Veronika Uríčková
    • 1
  • Katarína Hroboňová
    • 1
  • Pavel Májek
    • 1
  1. 1.Institute of Analytical Chemistry, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations