Food Analytical Methods

, Volume 6, Issue 6, pp 1718–1727 | Cite as

Next-Generation Sequencing as a Tool for Detailed Molecular Characterisation of Genomic Insertions and Flanking Regions in Genetically Modified Plants: a Pilot Study Using a Rice Event Unauthorised in the EU

  • Daniela Wahler
  • Leif Schauser
  • Joachim Bendiek
  • Lutz Grohmann


Precise molecular characterisation of genetic modifications integrated into the genomes of genetically modified organisms (GMOs) and of their flanking genomic regions forms a key component for the development of event-specific detection methods. In the EU, this information is of particular importance for risk management in cases where genetic modifications of unauthorised GM food, feed or seeds are detected. PCR-based chromosome walking approaches are commonly used for DNA sequence determination of the genetic modifications and of the flanking genomic regions in yet undescribed GM plants. If the plant contains complex and re-arranged modifications, sequencing and molecular characterisation are often difficult and laborious. Next-generation sequencing (NGS) of DNA is a powerful alternative tool to rapidly generate primary sequence data on the genome of so far uncharacterised sample material if pure GMO material is available. Recently, robust NGS platforms and affordable sequencing services are accessible for food and feed control laboratories. We here present a NGS-based study for whole-genome sequencing of the GM rice event LLRice62 as a proof-of-principle experiment to develop bioinformatics easy-to-use data analysis tools for rapid molecular characterisation. A total of 171,657,155 read mate pairs of approximately 75 bp each were obtained. Sequence reads belonging to the genetic modifications and their flanking genomic regions in LLRice62 were identified by bioinformatic comparison to the corresponding Oryza sativa ssp. japonica reference genome sequence using the Illumina InDel caller software and subsequent iterative mapping of retrieved NGS reads. An entire genetic modification of 1,493 bp in the genome of the LLRice62 sample material was determined and correctly mapped on chromosome 6. The determined nucleotide sequence coincides to the genetic modification described by the developer of this rice event. This study demonstrates for the first time the applicability of NGS for molecular characterisation of uncharacterised GMOs.


GMO Molecular characterisation Next-generation sequencing Re-sequencing Genetically modified Detection Rice 


Conflict of Interest

Daniela Wahler has no conflict of interest. Leif Schauser has no conflict of interest. Joachim Bendiek has no conflict of interest. Lutz Grohmann has no conflict of interest. This article does not contain any studies with human or animals subjects.


  1. Arai-Kichise Y, Shiwa Y, Nagasaki H et al (2011) Plant Cell Physiol 52:274–282CrossRefGoogle Scholar
  2. Babekova R, Funk T, Pecoraro S, Engel KH, Busch U (2009) Eur Food Res Technol 228:707–716CrossRefGoogle Scholar
  3. Bonfini L, van den Bulcke MH, Mazzara M, Ben E, Patak A (2012) J AOAC International 95:1713–1719CrossRefGoogle Scholar
  4. Cao J, Schneeberger K, Ossowski S (2011) Nat Genet 43(10):956–963CrossRefGoogle Scholar
  5. EFSA (2007) The EFSA Journal 588, 1–25, Accessed 22 July 2013
  6. Feltus A, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) Genome Res 14:1812–1819CrossRefGoogle Scholar
  7. Franck G, Guille M, Jonard G, Richards K, Hirth L (1980) Cell 21:285–294CrossRefGoogle Scholar
  8. Gürtler P, Meissner E, Busch U (2011) Abschlußbericht zum Projekt Nachweis von nicht zugelassenen gentechnisch veränderten Organismen (GVO): Weltweite Ermittlung, Importanalyse und Entwicklung von Nachweis-Methoden; LGL OberschleißheimGoogle Scholar
  9. Hajdukiewicz P, Svab Z, Maliga P (1994) Plant Mol Biol 25:989–994CrossRefGoogle Scholar
  10. IRGSP (International Rice Genome Sequencing Project) (2005), Nature 436:793–800 Google Scholar
  11. Kovalic D, Garnaat C, Guo L (2012) The Plant Genome 5(3):149–163Google Scholar
  12. Li H, Durbin R (2009) Bioinformatics 25:1754–1760CrossRefGoogle Scholar
  13. Li H, Handsaker B, Wysoker A et al (2009) Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  14. Milcamps A, Rabe S, Cade R, De Framond AJ, Henriksson P, Kramer V, Lisboa D, Pastor-Benito S, Willits MG, Lawrence D, van den Eede G (2009) J Agric Food Chem 57(8):3156–3163CrossRefGoogle Scholar
  15. Miller JR, Koren S, Sutton G (2010) Genomics 95(6):315–327CrossRefGoogle Scholar
  16. Monsanto Company (2000) Updated molecular characterization and safety assessment of Roundup Ready soybean event 40-3-2, Accessed 22 July 2013
  17. Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Nucleic Acid Res 14(14):5857–5868CrossRefGoogle Scholar
  18. Pop M (2009) Brief Bioinform 10(4):354–366CrossRefGoogle Scholar
  19. Rice P, Longden I, Bleasby A (2000) Trends Genet 16(6):276–277CrossRefGoogle Scholar
  20. Schweizer HP (1993) Gene 134:89–91CrossRefGoogle Scholar
  21. Spalinskas R, van den Bulcke M, van den Eede G, Milcamps A (2013) Food Anal Methods 6:705–713CrossRefGoogle Scholar
  22. The International Brachypodium Initiative (2010) Nature 463:763–768CrossRefGoogle Scholar
  23. Waiblinger H, Grohmann L, Mankertz J, Engelbert D, Pietsch K (2010) Anal Bioanal Chem 396:2065–2072CrossRefGoogle Scholar
  24. Wang C, Jiang L, Rao J, Liu Y, Yang L, Zhang D, Agric J (2010) Food Chem 58:11543–11547CrossRefGoogle Scholar
  25. Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119CrossRefGoogle Scholar
  26. Zhang Z, Schwartz S, Wagner L, Miller W (2000) J Comput Biol 7(1–2):203–214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniela Wahler
    • 1
  • Leif Schauser
    • 2
  • Joachim Bendiek
    • 1
  • Lutz Grohmann
    • 1
  1. 1.Federal Office of Consumer Protection and Food SafetyBerlinGermany
  2. 2.Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark

Personalised recommendations