Advertisement

Food Analytical Methods

, Volume 7, Issue 3, pp 540–546 | Cite as

Determination of Inorganic Elements in Teas Using Inductively Coupled Plasma Optical Emission Spectrometry and Classification with Exploratory Analysis

  • Roberta E. S. Froes
  • Waldomiro Borges Neto
  • Mark Antony Beinner
  • Clésia C. Nascentes
  • José B. B. da Silva
Article

Abstract

Multivariate optimization was employed to obtain the best conditions of the inductively coupled optical emission spectrometer (ICP OES) (nebulization gas flow rate of 0.47 L min−1 and applied power of 1.36 kW) for the determination of Al, Ba, Ca, Cu, Fe, K, Mg, Na, and Mn in 27 green tea samples. In the hierarchical cluster analysis, it was possible to observe the formation of five different groups (imported Japanese samples, samples without specifications, organically cultivated samples, samples in capsules, and ready-to-drink iced tea samples) besides the separation according to brand. In the principal component analysis we verified that the first four main components explained 99.98 % of the total variance. The ICP OES technique and the exploratory analysis were shown effective tools that can be used jointly in the quality control and classification of green tea samples.

Keywords

Inductively coupled plasma optical emission spectrometry Inorganic elements Green teas Multivariate optimization 

Notes

Acknowledgments

The authors wish to thank the Ezequiel Dias Foundation (FUNED) for their donation of laboratory equipment for this research, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação de Desenvolvimento da Pesquisa (FUNDEP) for their financial support.

Conflict of Interest

Roberta E.S. Froes declares that she has no conflict of interest. Waldomiro Borges Neto declares that he has no conflict of interest. Mark A. Beinner declares that he has no conflict of interest. Clésia C. Nascentes declares that she has no conflict of interest. José Bento B. da Silva declares that he has no conflict of interest. This article does not contain any studies with human or animal subjects.

References

  1. ANVISA, RDC no. 154, Brasil (2004) Legislação em Vigilância Sanitária, Resolução -RDC no. 154, de 15 de junho de 2004Google Scholar
  2. Environmental Protection Agency–EPA (1992) Guidance for methods development and methods validation for the RCRA program SW-846 MethodsGoogle Scholar
  3. FDA no. 2004N- 0416, USA (2005) Department of health and human services, Rules and Regulations, Federal Register: June 9, 2005, 70, 110Google Scholar
  4. Fernández PL, Pablos F, Martín MJ, González AG (2002) Food Chem 76:483–489CrossRefGoogle Scholar
  5. Flandrin JL, Montanari M (1998) História da alimentação, 2nd edn. vol 1. Estação Liberdade, São Paulo, p 885Google Scholar
  6. Fujiki H, Imai K, Nakachi K, Shimizu M, Moriwaki H, Suganuma M (2012) J Cancer Res Clin Oncol 138(8):1259–1270CrossRefGoogle Scholar
  7. Gómez MR, Cerutti S, Sombra LL, Silva MF, Martinez LD (2007) Food Chem Toxicol 45(6):1060–1064CrossRefGoogle Scholar
  8. Green JM (1996) Anal Chem 305A–309AGoogle Scholar
  9. Herrador MA, Gonzáles AG (2001) Talanta 53:1249–1257CrossRefGoogle Scholar
  10. Hussain I, Khan F, Iqbal Y, Khalil SJ (2006) J Chem Soc Pak 28(3):246–251Google Scholar
  11. Li F, Li S, Li HB, Deng GF, Ling WH, Xu XR (2013) Food Funct 4(4):530–538CrossRefGoogle Scholar
  12. Lozak A, Soltyk K, Ostapczuk P, Fijalek Z (2002) Sci Total Environ 289:33–40CrossRefGoogle Scholar
  13. Marchisio PF, Sales A, Cerutti S, Marchevski E, Martinez LD (2005) J Hazard Mater 124:113–118CrossRefGoogle Scholar
  14. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewin PJ, Smeyers-Verbeke J (1998) Handbook of Chemometrics and Qualimetrics: Part B. Elsevier, AmsterdamGoogle Scholar
  15. Mingoti SA (2005) Análise de componente principais. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada, 1st edn. vol. 1, (pp 59–95). UFMG, Belo Horizonte p 59–95Google Scholar
  16. Piñero AM, Fishen A, Hill SJ (2003) J Food Comp Anal 16:195–211CrossRefGoogle Scholar
  17. Powell JJ, Burden TJ, Thompson RPH (1998) Analyst 123:1721–1724CrossRefGoogle Scholar
  18. Silva JCJ, Santos DM, Baccan N, Cadore S, Nóbrega JA (2004) Microchem J 77:185CrossRefGoogle Scholar
  19. Souza PP, Siebaldi HGL, Augusti DV, Neto WB, Amorim VM, Catharino RR, Eberlin MN, Augusti R (2007) J Agric Food Chem 55:2094–2102CrossRefGoogle Scholar
  20. Statsoft (1999) Statistica for Windows, Computer Program Manual, TulsaGoogle Scholar
  21. Street R, Szakova J, Drabek O, Mladkova L (2006) Czech J Food Sci 24(2):62–71Google Scholar
  22. Teófilo RF, Ferreira MM (2006) Quimiometria II: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial. Quim Nova 29:338CrossRefGoogle Scholar
  23. Wise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS (2005) PLS Toolbox 3.5 for use with MATLAB. Eigenvector Research Inc, MansonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roberta E. S. Froes
    • 1
  • Waldomiro Borges Neto
    • 2
  • Mark Antony Beinner
    • 3
  • Clésia C. Nascentes
    • 4
  • José B. B. da Silva
    • 4
  1. 1.Department of ChemistryFederal University of Ouro PretoOuro PretoBrazil
  2. 2.Institute of ChemistryFederal University of UberlândiaUberlândiaBrazil
  3. 3.School of Nursing and NutritionFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Analytical Chemistry, Department of ChemistryFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations