Food Analytical Methods

, Volume 6, Issue 2, pp 512–520

Optimization of HS SPME Fast GC-MS for High-Throughput Analysis of Strawberry Aroma

  • T. Vandendriessche
  • B. M. Nicolai
  • M. L. A. T. M. Hertog
Article
  • 640 Downloads

Abstract

Strawberry aroma is one of the most complex fruit aromas and is typically analyzed by headspace solid-phase microextraction gas chromatography–mass spectrometry (GC-MS). However, the runtime on a conventional GC-MS is rather long and therefore, not ideal in situations requiring high-throughput techniques. By equipping a conventional GC-MS with a Modular Accelerated Column Heater and a short narrow-bore capillary column, the runtime could be reduced 10 times without loss of resolution and sensitivity. In this manuscript, we present the optimization of this headspace solid phase microextraction fast GC-MS technique resulting in the determination of an optimal extraction time of 30 min, extraction temperature of 40 °C and incubation time of 10 min. A 50/30 μm DVB-CAR-PDMS fiber proved to be the best fiber choice. Sample preparation was carefully evaluated. Storage of the samples at −80 °C did not affect the aroma profile. However, during blending and elevated temperature, aroma changes have to be taken in consideration. At 40 °C, the abundance of mainly esters increased as compared to room temperature. During blending hexanal, 2-hexenal, hexanoic acid, and 2,3-butanedione increased in abundance. Finally, it was found that aroma intensities change according to strawberry tissue type. The outer tissues contained higher levels of mainly esters compared to the inner tissue types.

Keywords

Headspace solid-phase microextraction Fast GC-MS Fragaria ananassa Aroma 

References

  1. Barringer S, Ozcan G (2011) Effect of enzymes on strawberry volatiles during storage, at different ripeness level, in different cultivars, and during eating. J Food Sci 76(2):C324–C333. doi:DOI10.1111/j.1750-3841.2010.01999.x CrossRefGoogle Scholar
  2. Berna AZ, Lammertyn J, Saevels S, Di Natale C, Nicolai BM (2004) Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sensor Actuat B-Chem 97(2–3):324–333. doi:10.1016/j.snb.2003.09.020 CrossRefGoogle Scholar
  3. Berna A, Lammertyn J, Saevels S, Nicolai B, De Poortere S, Buysens S, Grun IU, Di Natale C (2005a) Tomato quality evaluation using electronic nose systems to complement sensory analysis. Proc 5th Intl Postharvest Symp 1 –3(682):1021–1028Google Scholar
  4. Berna AZ, Buysens S, Di Natale C, Grun IU, Lammertyn J, Nicolai BM (2005b) Relating sensory analysis with electronic nose and headspace fingerprint MS for tomato aroma profiling. Postharvest Biol Tec 36(2):143–155. doi:10.1016/j.postharvbio.2004.12.006 CrossRefGoogle Scholar
  5. Berna AZ, Geysen S, Li S, Verlinden BE, Larnmertyn J, Nicolai BA (2007) Headspace fingerprint mass spectrometry to characterize strawberry aroma at super-atmospheric oxygen conditions. Postharvest Biol Tec 46(3):230–236. doi:10.1016/j.postharvbio.2007.05.011 CrossRefGoogle Scholar
  6. Bood KG, Zabetakis I (2002) The biosynthesis of strawberry flavor (II): biosynthetic and molecular biology studies. J Food Sci 67(1):2–8CrossRefGoogle Scholar
  7. Bunkowski A, Bodeker B, Bader S, Westhoff M, Litterst P, Baumbach JI (2009) MCC/IMS signals in human breath related to sarcoidosis-results of a feasibility study using an automated peak finding procedure. J Breath Res 3 (4). doi:10.1088/1752-7155/3/4/046001
  8. Buttery RG, Teranishi R, Ling LC (1987) Fresh tomato aroma volatiles—a quantitative study. J Agr Food Chem 35(4):540–544CrossRefGoogle Scholar
  9. Jetti RR, Yang E, Kurnianta A, Finn C, Qian MC (2007) Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J Food Sci 72(7):S487–S496. doi:10.1111/j.1750-3841.2007.00445.x CrossRefGoogle Scholar
  10. Junger M, Bodeker B, Baumbach JI (2010) Peak assignment in multi-capillary column-ion mobility spectrometry using comparative studies with gas chromatography-mass spectrometry for VOC analysis. Anal Bioanal Chem 396(1):471–482. doi:10.1007/s00216-009-3168-z CrossRefGoogle Scholar
  11. Kanu AB, Hill HH (2008) Ion mobility spectrometry detection for gas chromatography. J Chromatogr A 1177(1):12–27. doi:10.1016/j.chroma.2007.10.110 CrossRefGoogle Scholar
  12. Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880(1–2):35–62Google Scholar
  13. Korytar P, Janssen HG, Matisova E, Brinkman UAT (2002) Practical fast gas chromatography: methods, instrumentation and applications. Trac-Trends Anal Chem 21(9–10):558–572CrossRefGoogle Scholar
  14. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885(1–2):153–193Google Scholar
  15. Matisova E, Domotorova M (2003) Fast gas chromatography and its use in trace analysis. J Chromatogr A 1000(1–2):199–221Google Scholar
  16. Modise DM (2008) Does freezing and thawing affect the volatile profile of strawberry fruit (Fragaria x ananassa Duch.)? Postharvest Biol Tec 50(1):25–30. doi:10.1016/j.postharvbio.2008.03.009 CrossRefGoogle Scholar
  17. Mondello L, Casilli A, Tranchida PQ, Costa R, Dugo P, Dugo G (2004) Fast GC for the analysis of citrus oils. J Chromatogr Sci 42(8):410–416Google Scholar
  18. Olbricht K, Grafe C, Weiss K, Ulrich D (2008) Inheritance of aroma compounds in a model population of Fragaria x ananassa Duch. Plant Breed 127(1):87–93Google Scholar
  19. Ooms K (1996) Identification of potentially causal regressors in PLS models. Dissertation. Catholic University Leuven, LeuvenGoogle Scholar
  20. Roth E, Berna A, Beullens K, Lammertyn J, Schenk A, Nicolai B (2007) Postharvest quality of integrated and organically produced apple fruit. Acta Hortic 737:39–45Google Scholar
  21. Saevels S, Lammertyn J, Berna AZ, Veraverbeke EA, Di Natale C, Nicolai BM (2003) Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples. Postharvest Biol Tec 30(1):3–14. doi:10.1016/S0925-5214(03)00059-0 CrossRefGoogle Scholar
  22. Saevels S, Lammertyn J, Berna AZ, Veraverbeke EA, Di Natale C, Nicolai BM (2004) An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life. Postharvest Biol Tec 31(1):9–19. doi:10.1016/S0925-5214(03)00129-7 CrossRefGoogle Scholar
  23. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732. doi:10.1111/j.1365-313X.2008.03446.x CrossRefGoogle Scholar
  24. Schwab W, Schaart JG, Rosati C (2009) Functional molecular biology research in Fragaria. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae, vol 6. Plant genetics and genomics: crops and models. Springer, New York, pp 457–486CrossRefGoogle Scholar
  25. Shiers V, Adechy M, Squibb A A new mass spectrometry-based electronic nose for headspace characterisation. In: Hurst WJ (ed) 5th International Symposium on Olfaction and the Electronic Nose, Baltimore, Maryland, USA, 1999. Electronic noses and sensor array based systems; design and application. pp 289–295Google Scholar
  26. Suutarinen J, Anakainen L, Autio K (1998) Comparison of light microscopy and spatially resolved Fourier transform infrared (FT-IR) microscopy in the examination of cell wall components of strawberries. Food Sci Technol-Leb 31(7–8):595–601CrossRefGoogle Scholar
  27. Valcarcel M, Aguilera-Herrador E, Cardenas S, Ruzsanyi V, Sielemann S (2008) Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns. J Chromatogr A 1214(1–2):143–150. doi:10.1016/j.chroma.2008.10.050 Google Scholar
  28. Vandendool H, Kratz PD (1963) A generalization of retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471CrossRefGoogle Scholar
  29. Vandendriessche T, Keulemans J, Geeraerd A, Nicolaï BM, Hertog MLATM (2011a) Evaluation of fast aroma analysis for detection of Botrytis cinerea infections in strawberry. Submitted to Food MicrobiologyGoogle Scholar
  30. Vandendriessche T, Vermeir S, Mayayo Martinez C, Hendrickx Y, Lammertyn J, Niciolaï BM, Hertog MLATM (2011b) High-throughput analysis of strawberry quality: focus on ripening process and inter-cultivar differences. LWT—Food Science and Technology submittedGoogle Scholar
  31. Vas G, Vekey K (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39(3):233–254. doi:10.1002/Jms.606 CrossRefGoogle Scholar
  32. Vermeir S, Hertog MLATM, Vankerschaver K, Swennen R, Nicolaï BM, Lammertyn J (2009) Instrumental based flavour characterisation of banana fruit. LWT Food Sci Technol 42(10):1647–1653. doi:10.1016/j.lwt.2009.05.024 CrossRefGoogle Scholar
  33. Williams A, Ryan D, Guasca AO, Marriott P, Pang E (2005) Analysis of strawberry volatiles using comprehensive two-dimensional gas chromatography with headspace solid-phase microextraction. J Chromatogr B 817(1):97–107. doi:10.1016/j.jchromb.2004.05.021 CrossRefGoogle Scholar
  34. Zabetakis I, Holden MA (1997) Strawberry flavour: analysis and biosynthesis. J Sci Food Agric 74(4):421–434CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • T. Vandendriessche
    • 1
  • B. M. Nicolai
    • 1
  • M. L. A. T. M. Hertog
    • 1
  1. 1.BIOSYST-MeBioSKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations