Food Analytical Methods

, Volume 6, Issue 1, pp 181–190 | Cite as

Analysis of Cereal Starches by High-Performance Size Exclusion Chromatography

  • Senay Simsek
  • Kristin Whitney
  • Jae-Bom Ohm


Starch has unique physicochemical characteristics among carbohydrates. Two important characteristics of starch are amylose/amylopectin ratio and molecular weight. The objective of this study was to develop a simple, one-step, and accurate method for the determination of amylose/amylopectin ratio and weight-averaged molecular weights of starch in whole meal cereal samples. This method would allow for the simultaneous measurement of these important properties without the time-consuming step of large-scale starch extraction. Starch from spring wheat, barley, oat, rye, buckwheat, rice, durum wheat, and corn was precipitated with ethanol and solubilized with potassium hydroxide and urea before analysis by a high-performance size exclusion chromatography (HPSEC) system with a refractive index detector. To verify peak identity, fractions were collected and then gas chromatography analysis of soluble starch and beta-glucan assays was performed. All HPSEC fractions contained only glucose and no beta-glucan was detected, indicating that there was no contamination from non-starch polysaccharides. Weight-averaged molecular weights were calculated using a series of gel permeation chromatography grade dextrans. The method described in this study can be used to determine amylose/amylopectin ratio and weight-averaged molecular weight of cereal starches using as low as 25 mg whole meal samples without large-scale starch extraction.


Starch High-performance size exclusion chromatography Cereal Amylose Amylopectin 



High-performance size exclusion chromatography


Potassium hydroxide


Dimethyl sulfoxide





This work was supported by North Dakota State University Agricultural Experiment Station and a grant from the North Dakota Wheat Commission. We would like to thank Drs. Douglas Doehlert and Shahryar Kianian for providing durum waxy flours and to Angela Ostenson for her help in the analysis of the starch samples. We are grateful to the personnel at the Agricultural Experimental Station, North Dakota State University for providing other cereal samples.


  1. American Association of Cereal Chemists (2000) Approved methods of the American Association of Cereal Chemists. AACC International, St. PaulGoogle Scholar
  2. Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) Carbohydr Res 113:291–299CrossRefGoogle Scholar
  3. Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC (2005) J Agric Food Chem 53:2717–2725CrossRefGoogle Scholar
  4. Chen Y, Fringant C, Rinaudo M (1997) Carbohydr Polym 33:73–78CrossRefGoogle Scholar
  5. Creek JA, Benesi A, Runt J, Ziegler GR (2007) Carbohydr Polym 68:465–471CrossRefGoogle Scholar
  6. Dias RP, Fernandes CS, Mota M, Teixeira J, Yelshin A (2008) Carbohydr Polym 74:852–857CrossRefGoogle Scholar
  7. Dimler RJ, Davis HA, Rist CE, Hilbert GE (1944) Cereal Chem 21:430Google Scholar
  8. Eliasson AC, Gudmundsson M, Svensson G (1995) Food Sci Technol 28:227–235Google Scholar
  9. Fertig CC, Podczeck F, Jee RD, Smith MR (2004) Eur J Pharm Sci 21:155–159CrossRefGoogle Scholar
  10. Gibson TS, Solah VA, Mccleary BV (1997) J Cereal Sci 25:111–119CrossRefGoogle Scholar
  11. Gidley MJ, Hanashiro I, Hani NM, Hill SE, Huber A, Jane JL, Liu Q, Morris GA, Rolland-Sabate A, Striegel AM, Gilbert RG (2010) Carbohydr Polym 79:255–261CrossRefGoogle Scholar
  12. Grant LA, Ostenson AM, Rayas-Duarte P (2002) Cereal Chem 79:771–773CrossRefGoogle Scholar
  13. Haase NU (1993) Plant Breed 111:325–329CrossRefGoogle Scholar
  14. Harada T, Sugimoto K, Yokobya K, Akai H, Misaki A (1972) Biochim Biophys Acta 268:497CrossRefGoogle Scholar
  15. Hermansson AM, Svegmark K (1996) Trends Food Sci Technol 7:345–353CrossRefGoogle Scholar
  16. Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip WK (1992) Cereal Chem 69:528–535Google Scholar
  17. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T (1999) Cereal Chem 76:629–637CrossRefGoogle Scholar
  18. Jobling S (2004) Curr Opin Plant Biol 7:210–218CrossRefGoogle Scholar
  19. Klavons JA, Dintzis FR, Millard MM (1997) Cereal Chem 74:832–836CrossRefGoogle Scholar
  20. Lu TJ, Chen JC, Lin CL, Chang YH (2005) Food Chem 91:69–77CrossRefGoogle Scholar
  21. Lu TJ, Lin JH, Chen JC, Chang YH (2008) J Agric Food Chem 56:2208–2215CrossRefGoogle Scholar
  22. Mahmood T, Turner MA, Stoddard FL (2007) Starch-Starke 59:357–365CrossRefGoogle Scholar
  23. Matheson NK, Welsh LA (1988) Carbohydr Res 180:301–313CrossRefGoogle Scholar
  24. Mccleary BV, Nurthen E (1986) J Inst Brew 92:168–173Google Scholar
  25. Mccleary BV, Solah V, Gibson TS (1994) J Cereal Sci 20:51–58CrossRefGoogle Scholar
  26. McCready RM, Hassid WZ (1943) J Am Chem Soc 65:1154–1157CrossRefGoogle Scholar
  27. Mestres C, Matencio F, Pons B, Yajid M, Fliedel GV (1996) Starch-Starke 48:2–6CrossRefGoogle Scholar
  28. Millan-Testa CE, Mendez-Montealvo MG, Ottenhof MA, Farhat IA, Bello-Perez LA (2005) J Agric Food Chem 53:495–501CrossRefGoogle Scholar
  29. Mohammadkhani A, Stoddard FL, Marshall DR (1998) J Cereal Sci 28:273–280CrossRefGoogle Scholar
  30. Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O (1998) Carbohydr Polym 37:153–158CrossRefGoogle Scholar
  31. Ohm J, Ostenson AM, Hareland GA, Doehlert DC, Simsek S (2008) Cereal Foods World 53:71AGoogle Scholar
  32. Peroni FHG, Rocha TS, Franco CML (2006) Food Sci Technol Int 12:505–513CrossRefGoogle Scholar
  33. Primo-Martin C, van Nieuwenhuijzen NH, Hamer RJ, van Vliet T (2007) J Cereal Sci 45:219–226CrossRefGoogle Scholar
  34. Rindlav-Westling A, Stading M, Hermansson AM, Gatenholm P (1998) Carbohydr Polym 36:217–224CrossRefGoogle Scholar
  35. Robyt JF (2008) Glycoscience. Springer, BerlinGoogle Scholar
  36. Sandhu KS, Singh N, Malhi NS (2005) Food Chem 89:541–548CrossRefGoogle Scholar
  37. Sasaki T, Matsuki J (1998) Cereal Chem 75:525–529CrossRefGoogle Scholar
  38. Scott MP, Jane JL, Soundararajan M (1999) Phytochemistry 52:555–559CrossRefGoogle Scholar
  39. Seguchi M, Higasa T, Mori T (1994) Cereal Chem 71:636–639Google Scholar
  40. Shibanuma Y, Takeda Y, Hizukuri S (1996) Carbohydr Polym 29:253–261CrossRefGoogle Scholar
  41. Shujun W, Hongyan L, Wenyuan G, Haixia C, Jiugao Y, Peigen X (2006) Food Chem 99:30–37CrossRefGoogle Scholar
  42. Sievert D, Wursch P (1993) J Food Sci 58:1332–1334CrossRefGoogle Scholar
  43. Tattiyakul J, Pradipasena P, Asavasaksakul S (2007) Starch-Starke 59:342–347CrossRefGoogle Scholar
  44. Tester RF, Karkalas J (1996) Cereal Chem 73:271–277Google Scholar
  45. Van Hung P, Maeda T, Morita N (2006) Trends Food Sci Technol 17:448–456CrossRefGoogle Scholar
  46. Wang YJ, Truong VD, Wang LF (2003) Carbohydr Polym 52:327–333CrossRefGoogle Scholar
  47. Whistler RL, BeMiller JN (2007) Carbohydrate chemistry for food scientists. AACC International, St. PaulGoogle Scholar
  48. Wu YV, Doehlert DC (2002) Food Sci Technol 35:30–33Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  2. 2.USDA-ARS Hard Red Spring and Durum Wheat Quality Laboratory, Harris HallNorth Dakota State UniversityFargoUSA

Personalised recommendations