Advertisement

Food Analytical Methods

, Volume 6, Issue 1, pp 164–175 | Cite as

The Effect of Sequential Fractionation Technique on the Various Efficacies of Pomegranate (Punica granatum L.)

  • Mital J. Kaneria
  • Sumitra V. ChandaEmail author
Article

Abstract

The pomegranate (Punica granatum L.) is a fruit-bearing deciduous shrub. Various parts of this plant are used in the treatment of dyspepsia, bronchitis, hypotensive, throat inflammation, etc. and its nutritional value has well been accepted. In the present study, antioxidant and antimicrobial efficacy of different solvent fractions of P. granatum leaves was investigated. Fractionation was done sequentially in Soxhlet apparatus, using various solvents like petroleum ether, toluene, ethyl acetate, acetone, and water. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, superoxide anion radical scavenging assay, and reducing capacity assessment. Total phenol and flavonoid content was also measured. The antimicrobial activity was assessed by agar well diffusion method against some of the tested food borne, pathogenic, and skin disease causing microorganisms. Antiulcer activity of the P. granatum acetone fraction (PGA) was evaluated using ethanol-induced gastric ulcer model. The PGA had maximum phenol content and had higher antioxidant activity. The PGA showed better DPPH free radical and superoxide anion radical scavenging activity than that of the standards. The results demonstrated that acetone fraction had potent gastroprotective and antisecretory effects. This study suggests that sequential fractionation technique is an excellent technique of extracting bioactive components of this plant at least. This study also demonstrated that PGA can serve as a potential natural source for use in food, nutraceutical, and pharmaceutical industry.

Keywords

Punica granatum Sequential fractionation Antimicrobics Antioxidants Antiulcer activity Total phenol content 

Notes

Acknowledgments

The authors thank Prof. S.P. Singh, Head of the Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India for providing excellent research facilities. One of the author Mr. Mital Kaneria is thankful to the University Grants Commission, New Delhi, India for providing financial support as Junior Research Fellow.

References

  1. Abdel-Salam OM, Czimmer J, Debreceni A, Szolcsanyi J, Mozsik G (2001) J Physiol 95:105Google Scholar
  2. Adiga S, Trivedi P, Ravichandra V, Deb D, Mehta F (2010) Asian Pac J Trop Med 3:687CrossRefGoogle Scholar
  3. Ahmed L, Martin-Diana AB, Rico D, Barry-Ryan C (2011) Food Chem 124:1451CrossRefGoogle Scholar
  4. Alper N, Acar J (2004) Die Nahrung 48:184CrossRefGoogle Scholar
  5. Amirghofran Z (2010) Iran J Immunol 7:65Google Scholar
  6. Aruoma OI (2003) Mutat Res 523:9CrossRefGoogle Scholar
  7. Athukorala Y, Kim KN, Jeon YJ (2006) Food Chem Toxicol 44:1065CrossRefGoogle Scholar
  8. Awari DM, Mute VM, Thube BB (2009) J Pharm Res 2:182Google Scholar
  9. Bajpai VK, Minkyun NA, Kang SC (2010) Food Chem Toxicol 48:1945CrossRefGoogle Scholar
  10. Brzozowski T, Konturek SJ, Kwiecien S, Pajdo R, Brzozowski I, Hahn EG (1998) J Clin Gastroenterol 27:125CrossRefGoogle Scholar
  11. Celik I, Temur A, Isik I (2009) Food Chem Toxicol 47:145CrossRefGoogle Scholar
  12. Chanda S, Dave R (2009) Afr J Microbiol Res 3:981Google Scholar
  13. Chanda SV, Nagani KV (2010) Nat Sci 8:260Google Scholar
  14. Chanda S, Baravalia Y, Kaneria M, Rakholiya K (2010a) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Spain, 2:444Google Scholar
  15. Chanda S, Dudhtra S, Kaneria M (2010b) Food Funct 1:308CrossRefGoogle Scholar
  16. Chang C, Yang M, Wen H, Chern J (2002) J Food Drug Anal 10:178Google Scholar
  17. Das AK, Mandal SC, Banerjee SK, Sinha S, Das J, Saha BP, Pal M (1999) J Ethnopharmacol 68:205CrossRefGoogle Scholar
  18. Endo EH, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Filho BPD (2010) Res Microbiol 161:534CrossRefGoogle Scholar
  19. Fang YZ, Yang S, Wu G (2002) Nutrition 18:872CrossRefGoogle Scholar
  20. Ganguly AK (1969) Experientia 25:1224CrossRefGoogle Scholar
  21. Gill NS, Dhawan S, Jain A, Arora R, Bail M (2012) Res J Med Plant 6:47CrossRefGoogle Scholar
  22. Gordon MF (1990) Food antioxidants. Elsevier, London, pp 1–18CrossRefGoogle Scholar
  23. Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY (2010) Arab J Chem 3:43CrossRefGoogle Scholar
  24. Halliwell B, Gutteridge JMC (1986) Free radicals in biology and medicine. Clarendon, OxfordGoogle Scholar
  25. Hoogerwerf W, Pasricha PJ (2006) The pharmacological basis of therapeutics. Mc Graw Hill, New York, pp 967–981Google Scholar
  26. Issa AY, Volate SR, Wargovich MJ (2006) J Food Comp Anal 19:405CrossRefGoogle Scholar
  27. Jurenka MTJ (2008) Altern Med Rev 13:128Google Scholar
  28. Kalimuthu S, Rajesh P, Rajesh-Kannan V, Balamurugan B, Chandrasekar TM (2010) J Pharm Res 3:2779Google Scholar
  29. Kaneria M, Baravalia Y, Vaghasiya Y, Chanda S (2009) Indian J Pharm Sci 71:406CrossRefGoogle Scholar
  30. Kaur G, Jabbar Z, Athar M, Alam AS (2006) Food Chem Toxicol 44:984CrossRefGoogle Scholar
  31. Ksouri R, Falleh HH, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magne C, Abdelly C (2009) Food Chem Toxicol 47:2083CrossRefGoogle Scholar
  32. Lansky EP, Newman RA (2007) J Ethnopharmacol 109:177CrossRefGoogle Scholar
  33. Lee CJ, Chen LG, Liang WL, Wang CC (2010) Food Chem 118:315CrossRefGoogle Scholar
  34. Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, Jager AK, Van Staden J (1999) J Ethnopharmacol 68:267CrossRefGoogle Scholar
  35. Liu J, Wang C, Wang Z, Zhang C, Lu S, Liu J (2011) Food Chem 126:261CrossRefGoogle Scholar
  36. Malik A, Mukhtar H (2006) Cell Cycle 5:371CrossRefGoogle Scholar
  37. Mc Donald S, Prenzler PD, Antolovich M, Robards K (2001) Food Chem 73:73CrossRefGoogle Scholar
  38. McCune LM, Johns T (2002) J Ethnopharmacol 82:197CrossRefGoogle Scholar
  39. Menezes SM, Cordeiro LN, Viana GS (2006) J Herb Pharmacother 6:79Google Scholar
  40. Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H, Nunez MJ, Parajo JC (2001) Food Chem 72:145CrossRefGoogle Scholar
  41. Nair R, Chanda S (2005) Indian J Pharm Sci 67:239Google Scholar
  42. Nair R, Vaghaisya Y, Gogvani N, Solanki A, Baluja S, Chanda S (2008) Plant Arch 8:671Google Scholar
  43. Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Braz J Microbiol 31:247Google Scholar
  44. Naveen A (2010) J Pharm Res 3:1119Google Scholar
  45. Parmar HS, Kar A (2007) Nutr Res 27:710CrossRefGoogle Scholar
  46. Patel C, Dadhaniya P, Hingorani L, Soni MG (2008) Food Chem Toxicol 46:2728CrossRefGoogle Scholar
  47. Perez C, Paul M, Bazerque P (1990) Acta Biol Med Exp 15:113Google Scholar
  48. Qingming Y, Xianhui P, Weibao K, Hong Y, Yidan S, Li Z, Yanan Z, Yuling Y, Lan D, Guoan L (2010) Food Chem 118:84CrossRefGoogle Scholar
  49. Raj RK (1975) Indian J Physiol Pharmacol 19:47Google Scholar
  50. Rajkumar V, Guha G, Kumar RA (2011) Food Chem Toxicol 49:363CrossRefGoogle Scholar
  51. Rakholiya K, Kaneria M, Chanda S (2011) J Med Plants Res 5:63Google Scholar
  52. Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D (2007) Planta Med 73:461CrossRefGoogle Scholar
  53. Rice-Evans CA (1995) Free radical and oxidative stress: environments, drugs and food additives. Portland, Portland, pp 103–116Google Scholar
  54. Robak J, Gryglewski RJ (1988) Biochem Pharmacol 37:837CrossRefGoogle Scholar
  55. Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Free Radic Res 36:177CrossRefGoogle Scholar
  56. Sturgeon SR, Ronnenberg AG (2010) Nutr Rev 68:122CrossRefGoogle Scholar
  57. Su X, Sangster MY, D’Souza DH (2010) Foodborne Pathog Dis 7:1473CrossRefGoogle Scholar
  58. Sulaiman SF, Yusoff NA, Eldeen IM, Seow EM, Sajak AAB, Supriatno OKL (2011) J Food Comp Anal 24:1CrossRefGoogle Scholar
  59. Sun J, Chu YF, Wu X, Liu RH (2002) J Agric Food Chem 50:7449CrossRefGoogle Scholar
  60. Toklu HZ, Sehirli O, Ozyurt H, Mayadagli AA, Eksioglu-Demiralp E, Cetinel S, Sahin H, Yegen BC, Ulusoylu-Dumlu M, Gokmen V, Sener G (2009) J Radiat Res 50:345CrossRefGoogle Scholar
  61. Trease BE, Evans WC (1992) Text book of pharmacognosy, 13th edn. Bailliere, Tinall Ltd, London pp. 202–205Google Scholar
  62. Wallace JL (1993) Can J Physiol Pharmacol 71:98CrossRefGoogle Scholar
  63. Westh H, Zinn CS, Rosdahl VT, Sarisa (2004) Microb Drug Res 10:169CrossRefGoogle Scholar
  64. Wiart C, Hannah A, Yassim M, Hamimah H, Sulaiman M (2004) J Ethnopharmacol 95:285CrossRefGoogle Scholar
  65. Wongwattanasathien O, Kangsadalampai K, Tongyonk L (2010) Food Chem Toxicol 48:1045CrossRefGoogle Scholar
  66. Wu CR, Lin WH, Hseu YC, Lien JC, Lin YT, Kuo TP, Ching H (2011) Food Chem 127:564CrossRefGoogle Scholar
  67. Zhu KX, Lian CX, Guo XN, Peng W, Zhou HM (2011) Food Chem 126:1122CrossRefGoogle Scholar
  68. Zou Y, Lu Y, Wei D (2004) J Agric Food Chem 52:5032CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Phytochemical, Pharmacological and Microbiological Laboratory, Department of BiosciencesSaurashtra UniversityRajkotIndia

Personalised recommendations