Advertisement

Food Analytical Methods

, Volume 5, Issue 6, pp 1368–1376 | Cite as

GMOfinder—A GMO Screening Database

  • Lars Gerdes
  • Ulrich Busch
  • Sven PecoraroEmail author
Article

Abstract

The development and cultivation of genetically modified crops is still increasing globally. Food and feed imports from outside the European Union (EU) will subsequently require more effort from the responsible authorities in monitoring the compliance with effective labelling regulations. The aim of this study was the development of the GMOfinder, a database for collection and interpretation of information related to the screening for genetically modified organisms (GMOs). Different genetic elements (e.g. promoters, terminators, structural genes) are artificially introduced into plants to establish new genetic modifications. The introduced elements may vary between GMO events, depending on the intended trait(s). Screening for such inserted elements with (real-time) polymerase chain reaction is a common first step to analyse samples for the presence of any genetical modification. From the pattern of detectable and nondetectable elements, valuable conclusions about the identity of putative present GMO event(s) can be drawn with the GMOfinder. Information about selected genetic elements from the literature, applications for authorisation and other (web) sources were systematically integrated in a tabular matrix format. Special care was taken to additionally record the sources of the information, thus facilitating evaluation of screening results, and tracing of possible errors in the matrix. The GMOfinder accesses data from the element matrix with implemented algorithms and facilitates to interpret the outcome of screenings. Such a preselection helps to systematically narrow down the candidates for subsequent identification reactions. Optional display of events with potentially masked elements completes the included features.

Keywords

Genetically modified organism (GMO) Matrix of genetic elements Screening Food control Feed control Seed control 

Abbreviations

BVL

German Federal Office for Consumer Protection and Food Safety

EFSA

European Food Safety Authority

EURL-GMFF

European Reference Laboratory for GM Food and Feed

GMO

Genetically modified organism

LGL

Bavarian Health and Food Safety Authority

QM

Quality management

UI

Unique identifier

Notes

Acknowledgements

The presented work was funded by the Bavarian State Ministry of the Environment and Public Health (UGV04090803099). We thank Krimhilde Posthoff and Patrick Guertler for testing the database and for useful discussions. Andrea Harwardt, Claudia Bujotzek, Roswitha Dorfner, Ulrike Mulats, Melina Mehmedovic, and Manuela Hillen provided excellent technical assistance.

Conflict of Interest

None

Supplementary material

12161_2012_9378_Fig6_ESM.jpg (581 kb)
Fig. S6

Query algorithms in the GMOfinder. Schematic overview and partial screenshots of the dataset selection procedure in the GMOfinder. The user decides on the form by adjusting option groups; the value from the option group is assigned via visual basic for applications (VBA) to a global variable; a public function is set via VBA according to the global variable; the public function is then used directly as query parameter in a query (JPEG 580 kb)

12161_2012_9378_MOESM1_ESM.tif (1.2 mb)
High resolution image (TIFF 1.17 mb)
12161_2012_9378_Fig7_ESM.jpg (167 kb)
Fig. S7

Query parameters for the species selection. Schematic overview of the species selection procedure in the GMOfinder. The user enters experimental screening results by adjusting the species option groups (e.g. ‘Maize’) on the form; the value from the option group (e.g. ‘1’ for ‘detectable’) is assigned via VBA to a global variable (e.g. ‘MaisVorh’: ‘-1’ for ‘detectable’); a public function (e.g. ‘SpeziesMais()’) is set via VBA according to the global variable (e.g. ‘Mais’ for ‘detectable’); the public function is then used directly as parameter in the query. Query parameters: SpeziesMais() Or SpeziesSoja()… Or SpeziesTorenie(). Each of the parameters is either the German name of the species (e.g. ‘Mais’) or an empty string (‘“”’). Selection of ‘detectable’ or ‘not tested’ yields the corresponding German name, selection of ‘not detectable’ or ‘exclude’ yields the empty string as query parameter for the corresponding species (JPEG 166 kb)

12161_2012_9378_MOESM2_ESM.tif (42 kb)
High resolution image (TIFF 41.5 kb)
12161_2012_9378_Fig8_ESM.jpg (194 kb)
Fig. S8

Query parameters for the selection of genetic elements/constructs. Schematic overview of the genetic elements/constructs selection procedure in the GMOfinder. The user enters experimental screening results by adjusting the element/construct option groups (e.g. ‘p35S (a)’); the value from the option group (e.g. ‘1’ for ‘detectable’) is assigned via VBA to a global variable (e.g. ‘aVorh’: ‘1’ for ‘detectable’); two public functions [e.g. ‘Eamin()’ and ‘Eamax()’] are set via VBA according to the global variable (e.g. ‘0’ and ‘9’ for ‘detectable’); the public functions are then used as limiting parameters in the query. Query parameters: Between Exxxmin() And Exxxmax(). Each of the parameters Exxxmin and Exxxmax is -9, 9, or 0. The database value for the given element/construct is for each GMO an integer value between -9 and 9, or 0 (compare table in Fig. 2). The selection of the option with/without masking affects the public function Exxxmin() that is set to -9 independently of the selection in the option group (JPEG 194 kb)

12161_2012_9378_MOESM3_ESM.tif (55 kb)
High resolution image (TIFF 55.2 kb)
12161_2012_9378_Fig9_ESM.jpg (137 kb)
Fig. S9

Query parameters for the selection of empty datasets. Schematic overview of the selection procedure of empty datasets in the GMOfinder. The user decides on the inclusion/exclusion of empty datasets by adjusting the corresponding option group; the value from the option group (e.g. ‘1’ for ‘exclude’) is assigned via VBA to the global variable ‘leereDS’: ‘1’ for ‘exclude’; the public function ‘leerDS()’ is set via VBA according to the global variable (e.g. ‘“”’ for ‘exclude’); the public function is then used as comparison parameter in the query. Query parameters: Abs([a])+Abs([b])+…+Abs([m])>0 Or leerDS(). The database values for all elements/constructs are integer values between −9 and 9 or 0. Datasets with only 0 as value and accordingly 0 as sum of the absolute values are excluded by the presented query if the option ‘exclude’ is chosen (JPEG 137 kb)

12161_2012_9378_MOESM4_ESM.tif (32 kb)
High resolution image (TIFF 31.6 kb)

References

  1. AGBIOS/CERA, GM crop database. http://cera-gmc.org/index.php?action=gm_crop_database. Accessed 23.06.2010
  2. BATS (2003) Genetically modified (GM) crops: molecular and regulatory details - Version 2. BaselGoogle Scholar
  3. Chaouchi M, Chupeau G, Berard A et al (2008) J Agric Food Chem 56:11596CrossRefGoogle Scholar
  4. Congen (unpublished) Detection method for pFMV; proposed for official German method collection ‘Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB’Google Scholar
  5. Convention on Biological Diversity (CBD) (2008) UNEP/CBD/BS/COP-MOP/4/INF/2/Add.1Google Scholar
  6. CropScience-BioScience B (2006) Grain testing method for detection of rice GM events containing P35S::bar sequences using RT-PCR protocols PGS0494 and PGS0476. Protocol, Bayer Crop Science, Gent, BelgiumGoogle Scholar
  7. EFSA (2011) GMO requests and mandates. http://registerofquestions.efsa.europa.eu/roqFrontend/questionsListLoader?panel=GMO. Accessed 03.05.2011
  8. Eurofins GeneScan (unpublished) Detection method for pFMV; proposed for official German method collection ‘Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB’Google Scholar
  9. Grohmann L, Brünen-Nieweler C, Nemeth A, Waiblinger HU (2009) J Agric Food Chem 57:8913CrossRefGoogle Scholar
  10. Hamels S, Glouden T, Gillard K et al (2009) Eur Food Res Technol 228:531CrossRefGoogle Scholar
  11. Heinze P (2008) J Verbr Lebensm 3:43CrossRefGoogle Scholar
  12. Holst-Jensen A (2009) Biotechnol Adv 27:1071CrossRefGoogle Scholar
  13. Holst-Jensen A, Bertheau Y, Loose MD et al (2012) Biotechnol Adv. doi: 10.1016/j.biotechadv.2012.01.024
  14. James C (2011) ISAAA Brief 42Google Scholar
  15. Japanese Ministry of the Environment (2010) Japan Biosafety Clearing House. http://www.bch.biodic.go.jp/english/e_index.html, accessed 17.02.2010
  16. Kuribara H, Shindo Y, Matsuoka T et al (2002) J AOAC Int 85:1077Google Scholar
  17. Leimanis S, Hamels S, Nazé F et al (2008) Eur Food Res Technol 227:1621CrossRefGoogle Scholar
  18. Mano J, Shigemitsu N, Futo S et al (2009) J Agric Food Chem 57:26CrossRefGoogle Scholar
  19. OECD (2009) BioTrack product database. http://www2.oecd.org/biotech/byorganism.aspx. Accessed 21.07.2009
  20. Official German method collection ‘Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB’ (2008) Untersuchung von Lebensmitteln - Nachweis von bestimmten, häufig in gentechnisch veränderten Organismen (GVO) verwendeten DNA-Sequenzen aus dem Blumenkohlmosaikvirus (CaMV 35S-Promotor, P35S) sowie aus Agrobacterium tumefaciens (T-nos) in Lebensmitteln: Screening-Verfahren, vol 00.00-122Google Scholar
  21. Official German method collection ‘Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB’ (2008) Untersuchung von Lebensmitteln - Nachweis der CTP2-CP4-EPSPS-Gensequenz zum Screening auf Bestandteile aus gentechnisch veränderten Organismen (GVO) in Lebensmitteln; Konstrukt-spezifisches Verfahren, vol L 00.00–125Google Scholar
  22. Official German method collection ‘Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB’ (2008) Untersuchung von Lebensmitteln - Nachweis einer bestimmten, häufig in gentechnisch veränderten Organismen (GVO) verwendeten DNA-Sequenz aus dem bar-Gen von Streptomyces hygroscopicus in Lebensmitteln: Screening-Verfahren, vol 00.00-122Google Scholar
  23. Official German method collection ‘Unterausschuss Methodenentwicklung der Bund/Länder-Arbeitsgemeinschaft Gentechnik (LAG)’ (2006) Real-time PCR zur quantitativen Bestimmung gentechnisch veränderter Rapslinien mit dem 35S/pat-Genkonstrukt, vol 03/2006Google Scholar
  24. Official German method collection ‘Unterausschuss Methodenentwicklung der Bund/Länder-Arbeitsgemeinschaft Gentechnik (LAG)’ (2006) Konzept zur Untersuchung von Saatgut auf Anteile gentechnisch veränderter Pflanzen, vol 03/2006Google Scholar
  25. Querci M, Van den Bulcke M, Zel J, Van den Eede G, Broll H (2010) Anal Bioanal Chem 396Google Scholar
  26. Reiting R (2010) J Verbr Lebensm 5:377CrossRefGoogle Scholar
  27. Reiting R (unpublished) Unpublished method for: real-time PCR-detection of pTA29/barnase construct (29bar-Tm). LHL Hessen, GermanyGoogle Scholar
  28. Reiting R (unpublished) Real-time PCR-detection of pSSUAra/bar construct (Pbar-FP2/Tq-Pbar; modification of the PCR method of the German network LAG). LHL Hessen, GermanyGoogle Scholar
  29. Remacle J, Bertheau Y (2001) New technology in food science facing the multiplicity of new released GMO (GMOchips). University of Namur. http://www.fundp.ac.be/en/research/projects/page_view/01275404
  30. Stein AJ, Rodríguez-Cerezo E (2009) The global pipeline of new GM crops: implications of asynchronous approval for international trade. JRC Sci Tech RepGoogle Scholar
  31. The Food and Environment Research Agency (FERA) (2010) GM Test Matrices—GM lines test elements search (v_web2). http://www.gm-inspectorate.gov.uk/seedAuditProgramme/GMTestMatrices.cfm. Accessed 04.03.2010
  32. Van den Bulcke M, Lievens A, Barbau-Piednoir E et al (2010) Anal Bioanal Chem 396:2113CrossRefGoogle Scholar
  33. Waiblinger H-U, Boernsen B, Pietsch K (2008) DLR 104:261Google Scholar
  34. Waiblinger HU, Grohmann L, Mankertz J, Engelbert D, Pietsch K (2010) Anal Bioanal Chem 396:2065CrossRefGoogle Scholar
  35. Working Group Biochemical and Molecular Biological Analysis (2011) Screening table for the detection of authorised and unauthorised genetically modified plants. http://www.gdch.de/strukturen/fg/lm/ag/bioanal/gvonachweis.xls. Accessed 24.03.2011
  36. Zeitler R (2003) Standard operating procedure (SOP): ‘Qualitativer Nachweis von DNA-Sequenzen mit Hilfe der TaqMan-PCR’. Bavarian Environment Agency (LfU), Augsburg, GermanyGoogle Scholar
  37. Zeitler R, Pietsch K, Waiblinger H-U (2002) Eur Food Res Technol 214:346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Bavarian Health and Food Safety Authority (LGL)OberschleissheimGermany

Personalised recommendations