Food Analytical Methods

, Volume 5, Issue 2, pp 260–265 | Cite as

Geographical Authentication of Tequila According to its Mineral Content by Means of Support Vector Machines

  • Silvia Gillermina Ceballos-Magaña
  • Jose Marcos Jurado
  • Roberto Muñiz-Valencia
  • Angela Alcázar
  • Fernado de Pablos
  • María Jesus Martín


The elemental profile of tequila samples from the three main production areas of the State of Jalisco, namely Amatitlan, Guadalajara, and Tequila, was used to carry out their geographical characterization. With this aim, the concentration of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, S, Sr, and Zn was determined by inductively coupled plasma atomic emission spectroscopy. Principal component analysis was addressed to visualize data trends. The number of input variables was reduced by means of backward stepwise linear discriminant analysis and support vector machines were used to construct an adequate classification model. The best classification performance was obtained by a linear support vector machine model with 100% of prediction ability.


Tequila Geographical authentication Elemental profile Inductively coupled plasma atomic emission spectroscopy Pattern recognition Support vector machines 



S. G. Ceballos-Magaña and R. Muñiz-Valencia thank Consejo Nacional de Ciencia y Tecnologia (CONACyT) from the Government of Mexico for the grant awarded.

Supplementary material

12161_2011_9233_MOESM1_ESM.doc (36 kb)
Table S1 ICP-AES instrumental conditions (DOC 35 kb)
12161_2011_9233_MOESM2_ESM.doc (29 kb)
Table S2 Microwave program (DOC 29 kb)
12161_2011_9233_MOESM3_ESM.doc (122 kb)
Table S3 Elemental concentration (milligrammes per liter) of tequila samples. Triplicate measurements were carried out and mean value and standard deviation (in brackets) is given (DOC 122 kb)
12161_2011_9233_MOESM4_ESM.doc (32 kb)
Table S4 Loadings of the variables in the two first PCs (DOC 32 kb)


  1. Aguilar-Cisneros BO, López MG, Richling E, Heckel F, Schreier P (2002) J Agric Food Chem 50:7520CrossRefGoogle Scholar
  2. Barbosa O, Ramos G, Maldonado JL, Pichardo JL, Meneses MA, Landgrave JEA, Cervantes J (2006) Spectrochim Acta Part A 66:129Google Scholar
  3. Bauer C, Christoph N, Aguilar BO, Lopez MG, Richling E, Rossmann A (2003) Eur Food Res Technol 217:438CrossRefGoogle Scholar
  4. Benn SM, Peppard TL (1996) J Agric Food Chem 44:557CrossRefGoogle Scholar
  5. Berrueta LA, Alonso-Salces RM, Héberger K (2007) J Chromatogr A 1158:196CrossRefGoogle Scholar
  6. Burges CJC (1998) Data Min Knowl Disc 2:121CrossRefGoogle Scholar
  7. Ceballos-Magaña SG, Jurado JM, Martin MJ, Pablos F (2009) J Agric Food Chem 57:1372CrossRefGoogle Scholar
  8. Chen N, Lu W, Yang J, Li G (2004) Support vector machine in chemistry. World Scientific, SingaporeCrossRefGoogle Scholar
  9. Chen PH, Lin CJ, Schölhopf B (2005) App Stoch Model Bus 21:111CrossRefGoogle Scholar
  10. Cott PS (2001) J Off Stat 17:521Google Scholar
  11. Cynkar W, Dambergs R, Smith P, Cozzolino D (2010) Anal Chim Acta 660:227CrossRefGoogle Scholar
  12. Fabani MP, Arrúa RC, Vázquez F, Diaz MP, Baroni MV, Wunderlin DA (2010) Food Chem 119:372CrossRefGoogle Scholar
  13. Forina M, Armanino C, Leardi R, Drava G (1991) J Chemom 5:435CrossRefGoogle Scholar
  14. Frausto C, Medina C, Sato R, Sahún LR (2005) Spectrochim Acta Part A 61:2657CrossRefGoogle Scholar
  15. García-Martín S, Herrero C, Peña RM, Barciela J (2010) Food Chem 118:456CrossRefGoogle Scholar
  16. Gardiner WP (1997) Statistical analysis methods for chemists. Royal Society of Chemistry, Cambridge, United KingdomGoogle Scholar
  17. González AG (2007) J Chromatogr A 1158:215CrossRefGoogle Scholar
  18. Jolliffe IT (2002) Principal components analysis, 2nd edn. Springer, New York, USAGoogle Scholar
  19. Jurado JM, Alcázar A, Pablos F, Martín MJ, González AG (2005) Talanta 66:1350CrossRefGoogle Scholar
  20. Jurado JM, Ballesteros O, Alcázar A, Pablos F, Martín MJ, Vílchez JL, Navalón A (2007) Talanta 72:506CrossRefGoogle Scholar
  21. Jurado JM, Ballesteros O, Alcázar A, Pablos F, Martín MJ, Vílchez JL, Navalón A (2008) Anal Bioanal Chem 390:961CrossRefGoogle Scholar
  22. Lachenmeier DW, Richling E, Lopez MG, Frank W, Schreier P (2005) J Agric Food Chem 53:2151CrossRefGoogle Scholar
  23. Mexican Ministry of Commerce and Industry (2006) Regulation NOM-006 SCFI 2005. Alcoholic drinks—Tequila specifications. Diario Oficial de la Federación, MexicoGoogle Scholar
  24. Ozkan US, Cai Y, Kumthekar MW (1993) Appl Catal A- Gen 96:365CrossRefGoogle Scholar
  25. Vallejo B, González AF, Estrada MC (2004) J Agric Food Chem 52:5567CrossRefGoogle Scholar
  26. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, USAGoogle Scholar
  27. Vapnik VN, Lerner A (1963) Automat Rem Contr 24:774Google Scholar
  28. Vichi S, Riu M, Mora M, Boxaderas S, Lopez E (2005) J Agric Food Chem 53:10154CrossRefGoogle Scholar
  29. Xu Z, Zomer S, Brereton RG (2006) Crit Rev Anal Chem 36:177CrossRefGoogle Scholar
  30. Zomer S, Brereton RG, Carter JF, Eckers C (2004) Analyst 129:175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Silvia Gillermina Ceballos-Magaña
    • 1
  • Jose Marcos Jurado
    • 2
  • Roberto Muñiz-Valencia
    • 3
  • Angela Alcázar
    • 2
  • Fernado de Pablos
    • 2
  • María Jesus Martín
    • 2
  1. 1.Facultad de CienciasUniversidad de ColimaColimaMexico
  2. 2.Department of Analytical Chemistry, Faculty of ChemistryUniversity of SevilleSevilleSpain
  3. 3.Facultad de Ciencias QuímicasUniversidad de ColimaColimaMexico

Personalised recommendations