Food Analytical Methods

, Volume 4, Issue 4, pp 559–566 | Cite as

Dispersive Solid-Phase Extraction Clean-up Combined with Dispersive Liquid–Liquid Microextraction for the Determination of Neonicotinoid Insecticides in Vegetable Samples by High-Performance Liquid Chromatography

  • Qiuhua Wu
  • Zhi Li
  • Chun Wang
  • Chunxia Wu
  • Weina Wang
  • Zhi Wang


Dispersive solid-phase extraction (DSPE) clean-up combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of neonicotinoid insecticides in vegetable samples prior to high-performance liquid chromatography with diode array detection. In the DSPE–DLLME method, neonicotinoid insecticides were first extracted with acetonitrile from vegetable samples, followed by clean-up by a DSPE with primary secondary amine and multi-walled carbonnanotubes as sorbents. A 2.5-mL aliquot of the resulting extract was then added into a centrifuge tube containing 10 mL of water, 0.8 g NaCl, and 200-μL chloroform (as the extraction solvent) for DLLME procedure. Under the optimum conditions, the enrichment factors for the compounds were in the range between 110 and 243. The linearity of the method was in the range from 5.0 to 300 ng g−1 with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The detection limits of the method were 0.5–1.0 ng g−1. The repeatability of the method expressed as the relative standard deviations by five parallel experiments at the concentration levels of 10 and 50 ng g−1 each of the neonicotinoid insecticides in tomato or cucumber samples varied from 3.6% to 5.8%. The developed method has been successfully applied for the analysis of target neonicotinoid insecticides (acetamiprid, imidacloprid, thiacloprid, and thiamethoxam) in tomato and cucumber samples. The recoveries of the method for the target neonicotinoid insecticides from the vegetable samples at spiking levels of 10.0 and 50.0 ng g−1 were in the range between 84.6% and 97.5% (n = 5).


Dispersive solid-phase extraction Dispersive liquid–liquid microextraction Neonicotinoid insecticides High-performance liquid chromatography Vegetable samples 


  1. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) J AOAC Int 86:412Google Scholar
  2. Banerjee K, Oulkar DP, Dasgupta S, Patil SB, Patil SH, Savant R, Adsule PG (2007) J Chromatogr A 1173:98CrossRefGoogle Scholar
  3. Cunha SC, Fernandes JO, Oliveira MBPP (2009) J Chromatogr A 1216:8835CrossRefGoogle Scholar
  4. Díez C, Traag WA, Zommer P, Marinero P, Atienza J (2006) J Chromatogr A 1131:11CrossRefGoogle Scholar
  5. Fattahi N, Assadi Y, Hosseini MRM, Jahromi EZ (2007) J Chromatogr A 1157:23CrossRefGoogle Scholar
  6. Fernández-Alba AR, Valverde A, Agüera A, Contreras M, Chiron S (1996) J Chromatogr A 721:97CrossRefGoogle Scholar
  7. Fidente P, Seccia S, Vanni F, Morrica P (2005) J Chromatogr A 1094:175CrossRefGoogle Scholar
  8. Kmellár B, Fodor P, Pareja L, Ferrer C, Martínez-Uroz MA, Valverde A, Fernandez-Alba AR (2008) J Chromatogr A 1215:37CrossRefGoogle Scholar
  9. Koesukwiwat U, Sanguankaew K, Leepipatpiboon N (2008) Anal Chim Acta 626:10CrossRefGoogle Scholar
  10. Lehotay SJ, Mastovska K, Lightfield AR (2005) J AOAC Int 88:615Google Scholar
  11. Liang P, Xu J, Li Q (2008) Anal Chim Acta 609:53CrossRefGoogle Scholar
  12. Moreno JLF, Liébanas FJA, Frenich AG, Vidal JLM (2006) J Chromatogr A 1111:97CrossRefGoogle Scholar
  13. Muccio AD, Fidente P, Barbini DA, Dommarco R, Seccia S, Morrica P (2006) J Chromatogr A 1108:1CrossRefGoogle Scholar
  14. Nagaraju D, Huang SD (2007) J Chromatogr A 1161:89CrossRefGoogle Scholar
  15. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2002) J Agric Food Chem 50:4464CrossRefGoogle Scholar
  16. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2003) J Agric Food Chem 51:2501CrossRefGoogle Scholar
  17. Paya P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A (2007) Anal Bioanal Chem 389:1697CrossRefGoogle Scholar
  18. Pesticide EU-MRLs Database (2008) European Union, Brussels. Available at:
  19. Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2010) J Chromatogr A 1217:2618CrossRefGoogle Scholar
  20. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1CrossRefGoogle Scholar
  21. Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342CrossRefGoogle Scholar
  22. Seccia S, Fidente P, Barbini DA, Morrica P (2005) Anal Chim Acta 553:21CrossRefGoogle Scholar
  23. Seccia S, Fidente P, Montesano D, Morrica P (2008) J Chromatogr A 1214:115CrossRefGoogle Scholar
  24. Walorczyk S (2008) J Chromatogr A 1208:202CrossRefGoogle Scholar
  25. Watanabe E, Eun H, Baba K, Arao T, Ishii Y, Endo S, Ueji M (2004) Anal Chim Acta 521:45CrossRefGoogle Scholar
  26. Watanabe E, Miyake S, Baba K, Eun H, Endo S (2006) Anal Bioanal Chem 386:1441CrossRefGoogle Scholar
  27. Watanabe E, Baba K, Eun H (2007) J Agric Food Chem 55:3798CrossRefGoogle Scholar
  28. Wu QH, Wang C, Liu ZM, Wu CX, Wang Z (2009) J Chromatogr A 1216:5504CrossRefGoogle Scholar
  29. Wu CX, Liu HM, Liu WH, Wu QH, Wang C, Wang Z (2010) Anal Bioanal Chem 397:2543CrossRefGoogle Scholar
  30. Zhang SH, Li C, Song SJ, Feng T, Wang C, Wang Z (2010) Anal Methods 2:54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qiuhua Wu
    • 1
  • Zhi Li
    • 1
  • Chun Wang
    • 1
  • Chunxia Wu
    • 1
  • Weina Wang
    • 1
  • Zhi Wang
    • 1
  1. 1.College of ScienceAgricultural University of HebeiBaodingChina

Personalised recommendations