Advertisement

Food Analytical Methods

, Volume 4, Issue 3, pp 341–346 | Cite as

Direct Determination of β-Hydroxy-β-Methylbutyrate (HMB) in Liquid Nutritional Products

  • Jeffrey H. Baxter
  • Rosalyn R. Phillips
  • Lobat Dowlati
  • Karen C. Goehring
  • Paul W. Johns
Article

Abstract

A high performance liquid chromatography/ultraviolet method developed for the simple and direct determination of β-hydroxy-β-methylbutyrate (HMB) in liquid nutritional products and dietary supplements is described. Method suitability was defined by experimental assessments of linearity (r 2 > 0.9999), precision (day-to-day RSD <1.5%), accuracy (spike recoveries = 98.1–102.4%, n = 28), selectivity (peak purity average = 99.8 ± 0.8%, n = 10; absence of interference verified by placebo analysis), and quantitation limit (90 mg/kg or 0.8 mM). The method provides for a simple, accurate, and precise quantification of HMB, when present at millimolar concentrations in liquid nutritional products and dietary supplements.

Keywords

β-Hydroxy-β-methylbutyrate HPLC determination Method validation Liquid nutritional product Hydroxy acid UV absorptivity 

Notes

Acknowledgements

The authors gratefully acknowledge the valuable contributions of Keith B. Wheeler and William J. Winter.

References

  1. Baier S, Johannsen D, Abumrad N, Rathmacher JA, Nissen S, Flakoll P (2009) Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of β-hydroxy-β-methylbutyrate (HMB), l-arginine, and l-lysine. JPEN 33:71–82Google Scholar
  2. Berk L, James J, Schwartz A, Hug E, Mahadevan A, Samuels M, Kachnic L (2008) A randomized, double-blind, placebo-controlled trial of a β-hydroxyl β-methyl butyrate, glutamine, and arginine mixture for the treatment of cancer cachexia (RTOG 0122). Support Care Cancer 16:1179–1188CrossRefGoogle Scholar
  3. Curtius HC, Vollmin JA, Baerlocher K (1973) Study of metabolic pathways in vivo using stable isotopes. Anal Chem 45:1107–1110CrossRefGoogle Scholar
  4. Daolio S, Bonsembiante M, Bittante G, Ramanzin M, Rinaldo P (1989) Ruminal organic acid analysis by gas chromatography/mass spectrometry. J Agric Food Chem 37:970–974CrossRefGoogle Scholar
  5. Holecek M, Muthny T, Kovarik M, Sispera L (2009) Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem Toxicol 47:255–259CrossRefGoogle Scholar
  6. Kornasio R, Riederer I, Butler-Browne G, Mouly V, Uni Z, Halevy O (2009) β-hydroxy-β-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and P13K/Akt pathways. Biochem Biophys Acta 1793:755–763CrossRefGoogle Scholar
  7. Kraemer WJ, Hatfield DL, Volek JS, Fragala MS, Vingren JL, Anderson JM, Spiering BA, Thomas GA, Ho JY, Quann EE, Izquierdo M, Hakkinen K, Maresh CM (2009) Effects of amino acid supplement on physiological adaptations to resistance training. Med Sci Sports Exerc 41:1111–1121CrossRefGoogle Scholar
  8. Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55:5445–5451CrossRefGoogle Scholar
  9. Liebich DT, Gesele E (1999) Profiling of organic acids by capillary gas chromatography-mass spectrometry after direct methylation in urine using trimethyloxonium tetrafluorborate. J Chromatogr A 843:237–245CrossRefGoogle Scholar
  10. Loots DT, van der Westhuizen FH, Botes L (2007) Aloe ferox leaf gel phytochemical content, antioxidant capacity, and possible health benefits. J Agric Food Chem 55:6891–6896CrossRefGoogle Scholar
  11. Meylan WH, Howard PH, Boethling RS (1996) Improved method for estimating water solubility from octanol/water partition coefficients. Environ Toxicol Chem 15:100–106CrossRefGoogle Scholar
  12. Mock DM, Jackson H, Lankford GL, Mock NI, Weintraub ST (1989) Quantification of urinary 3-hydroxyisovaleric acid using deuterated 3-hydroxyisovaleric acid as internal standard. Biomed Environ Mass Spectrom 18:652–656CrossRefGoogle Scholar
  13. Paik MJ, Kim KR (2004) Sequential ethoxycarbonylation, methoximation and tert-butyldimethylisation for simultaneous determination of amino acids and carboxylic acids by dual-column gas chromatography. J Chromatogr A 1034:13–23CrossRefGoogle Scholar
  14. Sealey WM, Teague AM, Stratton SL, Mock DM (2004) Smoking accelerates biotin catabolism in women. Am J Clin Nutr 80:932–935Google Scholar
  15. Vandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, Tseng BS (2009) Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. FASEB J 23:3325–3334CrossRefGoogle Scholar
  16. Watanabe T, Oguchi KI, Ebara S, Fukui T (2005) Measurement of 3-hydroxyisovaleric acid in urine of biotin-deficient infants and mice by HPLC. J Nutr 135:615–618Google Scholar
  17. Wilson GJ, Wilson JM, Manninen AH (2008) Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience. A review. Nutr Metab 5:1–17CrossRefGoogle Scholar
  18. Wilson JM, Kim JS, Lee SR, Rathmacher JA, Dalmau B, Kingsley JD, Koch H, Manninen AH, Saadat R, Panton LB (2009) Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr Metab 6:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jeffrey H. Baxter
    • 1
  • Rosalyn R. Phillips
    • 1
  • Lobat Dowlati
    • 1
  • Karen C. Goehring
    • 1
  • Paul W. Johns
    • 1
  1. 1.Abbott Laboratories, Abbott Nutrition DivisionColumbusUSA

Personalised recommendations