Food Analytical Methods

, Volume 4, Issue 1, pp 121–129 | Cite as

Hydrophilic Interaction Chromatography (HILIC) in the Analysis of Relevant Quality and Safety Biochemical Compounds in Meat, Poultry and Processed Meats

  • Leticia Mora
  • Aleida S. Hernández-Cázares
  • M-Concepción Aristoy
  • Fidel Toldrá
  • Milagro Reig
Article

Abstract

HPLC methods based on hydrophilic interaction chromatography (HILIC) have been recently applied to the analysis of biochemical compounds, related to the quality, in meat and poultry as well as meat products like cooked ham and dry-cured ham. This type of chromatography has also been successfully used for the analysis of antibiotic residues in meat and poultry. HILIC chromatography has an increasing relevance for the analysis of polar compounds in foods due to its good retention without need for derivatisation. In general, HILIC-based methods have shown good performance for the analysis of polar biochemical compounds like dipeptides, creatine and creatinine, nucleotides and nucleosides, sphingolipids and residues, mainly antibiotics, in rather complex matrices such as muscles. Thus, this manuscript presents a review of recent applications of HILIC methods for the analysis of quality-related biochemical compounds and residues in meat, poultry and processed meats.

Keywords

HILIC HPLC Polar Compounds Dipeptides Sphingolipids Nucleotides and Nucleosides 

References

  1. Abe H, Okuma E (1995) Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi 42:827–834Google Scholar
  2. Ahn J, Bones J, Yu YQ, Rudd PM, Gilar M (2010) J Chromatogr B Anal Technol Biomed Life Sci 878:403–408CrossRefGoogle Scholar
  3. Aliani M, Farmer LJ (2005) J Agric Food Chem 53:6067–6072CrossRefGoogle Scholar
  4. Alpert AJ (1990) J Chromatogr 499:177–196CrossRefGoogle Scholar
  5. Andersen WC, Turnipseed SB, Karbiwnyk CM, Clark SB, Madson MR, Gieseker CA, Miller RA, Rummel NG, Reimschuessel R (2008) J Agric Food Chem 56:4340–4347CrossRefGoogle Scholar
  6. Aristoy MC, Toldrá F (1998) Meat Sci 50:327–332CrossRefGoogle Scholar
  7. Aristoy MC, Toldrá F (2004) Meat Sci 67:211–217CrossRefGoogle Scholar
  8. Aristoy MC, Soler C, Toldrá F (2004) Food Chem 84:485–491CrossRefGoogle Scholar
  9. Batlle N, Aristoy MC, Toldrá F (2000) J Food Sci 65:413–416CrossRefGoogle Scholar
  10. Batlle N, Aristoy MC, Toldrá F (2001) J Food Sci 66:68–71CrossRefGoogle Scholar
  11. Brown CE (1981) J Theor Biol 88:245–256CrossRefGoogle Scholar
  12. Calkins CR, Dutson TR, Smith GC, Carpenter ZL (1982) J Food Sci 47:1350–1353CrossRefGoogle Scholar
  13. Cambero MI, Pereira-Lima CI, Ordóñez JA, de Fernando GDG (2000) J Sci Food Agric 80:1519–1528CrossRefGoogle Scholar
  14. Chung WC, Tso SC, Sze ST (2007) J Chromatogr Sci 45:104–111Google Scholar
  15. Ciminiello P, Dell'Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Quilliam MA, Tubaro A, Poletti R (2005) Rapid Commun Mass Spectrom 19:2030–2038CrossRefGoogle Scholar
  16. Cornet M, Bousset J (1998) Meat Sci 51:215–219CrossRefGoogle Scholar
  17. Crush KG (1970) Comp Biochem Physiol 34:3CrossRefGoogle Scholar
  18. de Person M, Hazotte A, Elfakir C, Lafosse M (2005) J Chromatogr A 1081:174–181CrossRefGoogle Scholar
  19. Demant TW, Rhodes EC (1999) Sports Med 28:49–60CrossRefGoogle Scholar
  20. Dillehay DL, Webb SK, Schmelz EM, Merrill AH (1994) J Nutr 124:615–620Google Scholar
  21. Dixon AM, Delinsky DC, Bruckner JV, Fisher JW, Bartlett MG (2004) J Liq Chromatogr Relat Technol 27:2343–2355CrossRefGoogle Scholar
  22. Dunkel A, Hofmann T (2009) J Agric Food Chem 57:9867–9877CrossRefGoogle Scholar
  23. Dunnett M, Harris RC (1992) J Chromatogr Biomed Appl 579:45–53CrossRefGoogle Scholar
  24. Dunnett M, Harris RC (1997) J Chromatogr B 688:47–55CrossRefGoogle Scholar
  25. Dunnett M, Harris RC, Orme CE (1991) Scand J Clin Lab Invest 51:137–141CrossRefGoogle Scholar
  26. Eckhardt ER, Wang DQH, Donovan JM, Carey MC (2001) Gastroenterology 120:A679–A680Google Scholar
  27. Eckhardt ERM, Wang DQH, Donovan JM, Carey MC (2002) Gastroenterology 122:948–956CrossRefGoogle Scholar
  28. Estévez M, Morcuende D, Ventanas J, Ventanas S (2007) In: Toldrá F (ed) Handbook of fermented meat and poultry, 1st edn. Blackwell, Iowa, Chapter 38Google Scholar
  29. Fenaille F, Parisod W, Vuichoud J, Tabet JC, Guy PA (2004) J Chromatogr A 1052:77–84CrossRefGoogle Scholar
  30. Fischbeck A, Kruger M, Blaas N, Humpf HU (2009) J Agric Food Chem 57:9469–9474CrossRefGoogle Scholar
  31. Fish WW (1991) J Agric Food Chem 39:1098–1101CrossRefGoogle Scholar
  32. Fujita T, Hori Y, Otani T, Kunita Y, Sawa S, Sakai S, Tanaka Y, Takagahara I, Nakatani Y (1988) Agric Biol Chem 52:107–112Google Scholar
  33. Gianotti V, Chiurminatto U, Mazzucco E, Gosetti F, Bottaro M, Frascarolo P, Gennaro MC (2008) J Chromatogr A 1185:296–300CrossRefGoogle Scholar
  34. Grumbach ES, Diehl DM, Mccabe DR, Mazzeo JR, Neue UD (2003) Lc Gc Europe, 30–31Google Scholar
  35. Grumbach ES, Wagrowski-Diehl DM, Mazzeo JR, Alden B, Iraneta PC (2004) Lc Gc N Am 22:1010Google Scholar
  36. Guo Y, Gaiki S (2005) J Chromatogr A 1074:71–80CrossRefGoogle Scholar
  37. Guo Y, Huang AH (2003) J Pharm Biomed Anal 31:1191–1201CrossRefGoogle Scholar
  38. Hattula T, Kiesvaara M (1996) Lebensm Wiss Technol 29:135–139CrossRefGoogle Scholar
  39. Hellgren LI (2001) Eur J Lipid Sci Technol 103:661–667CrossRefGoogle Scholar
  40. Hertervig E, Nilsson A, Nyberg L, Duan RD (1997) Cancer 79:448–453CrossRefGoogle Scholar
  41. Hipkiss AR (1998) Int J Biochem Cell Biol 30:863–868CrossRefGoogle Scholar
  42. Hipkiss AR, Brownson C (2000) Cell Mol Life Sci 57:747–753CrossRefGoogle Scholar
  43. Hipkiss AR, Preston JE, Himsworth DTM, Worthington VC, Keown M, Michaelis J, Lawrence J, Mateen A, Allende L, Eagles PAM, Abbott NJ (1998) In: Harman D, Holliday R, Meydani M (eds) Towards prolongation of the healthy life span, vol 854. New York Academy of Sciences, New York, pp 37–53Google Scholar
  44. Huang SC, Kuo JC (2000) Proc Natl Sci Counc Repub China B 24:193–201Google Scholar
  45. Hughes MC, Kerry JP, Arendt EK, Kenneally PM, McSweeney PLH, O'Neill EE (2002) Meat Science 62:205–216CrossRefGoogle Scholar
  46. Huttunen KM, Rautio J, Leppanen J, Vepsalainen J, Keski-Rahkonen P (2009) J Pharm Biomed Anal 50:469–474CrossRefGoogle Scholar
  47. Ishii R, Horie M, Chan W, MacNeil J (2008) Food Addit Contam A Chem Anal Control Exposure Risk Assess 25:1509–1519Google Scholar
  48. Jiang W, Ihunegbo FN (2009) Lc Gc Europe, 21–23Google Scholar
  49. Jones NR, Murray CK, Murray J (1964) J Sci Food Agric 15:763CrossRefGoogle Scholar
  50. Karube I, Matsuoka H, Suzuki S, Watanabe E, Toyama K (1984) J Agric Food Chem 32:314–319CrossRefGoogle Scholar
  51. Kesiunaite G, Naujalis E, Padarauskas A (2008) J Chromatogr A 1209:83–87CrossRefGoogle Scholar
  52. Kovalova L, McArdell CS, Hollender J (2009) J Chromatogr A 1216:1100–1108CrossRefGoogle Scholar
  53. Lemonnier LA, Dillehay DL, Vespremi MJ, Abrams J, Brody E, Schmelz EM (2003) Arch Biochem Biophys 419:129–138CrossRefGoogle Scholar
  54. Liu Y, Xu XL, Zhou GH (2007) Food Chem 102:22–26CrossRefGoogle Scholar
  55. Lojkova L, Klejdus B, Moravcova J, Kuban V (2006) Food Addit Contam 23:963–973CrossRefGoogle Scholar
  56. Luong JHT, Male KB (1992) Enzyme Microb Technol 14:125–130CrossRefGoogle Scholar
  57. Luong JHT, Male KB, Masson C, Nguyen AL (1992) J Food Sci 57:77–81CrossRefGoogle Scholar
  58. Martín L, Antequera T, Ventanas J, itez-Donoso R, Cordoba JJ (2001) Meat Sci 59:363–368CrossRefGoogle Scholar
  59. Merrill AH, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E (1997) Toxicol Appl Pharmacol 142:208–225CrossRefGoogle Scholar
  60. Mora L, Sentandreu MA, Toldra F (2007) J Agric Food Chem 55:4664–4669CrossRefGoogle Scholar
  61. Mora L, Sentandreu MA, Toldrá F (2008a) Meat Sci 79:709–715CrossRefGoogle Scholar
  62. Mora L, Sentandreu MA, Toldrá F (2008b) J Agric Food Chem 56:11279–11284CrossRefGoogle Scholar
  63. Mora L, Hernández-Cázares AS, Aristoy MC, Toldrá F (2009) Food Chem, acceptedGoogle Scholar
  64. Mora L, Hernández-Cázares AS, Sentandreu MA, Toldrá F (2010) Meat Sci 84:384–389CrossRefGoogle Scholar
  65. Mulder PPJ, Beumer B, Van Rhijn JA (2007) Anal Chim Acta 586:366–373CrossRefGoogle Scholar
  66. Nyberg L, Duan RD, Nilsson A (2000) J Nutr Biochem 11:244–249CrossRefGoogle Scholar
  67. Oertel R, Neumeister V, Kirch W (2004a) J Chromatogr A 1058:197–201Google Scholar
  68. Oertel R, Renner U, Kirch W (2004b) J Pharm Biomed Anal 35:633–638CrossRefGoogle Scholar
  69. Okuma E, Abe H (1992) Comp Biochem Physiol A Physiol 102:37–41CrossRefGoogle Scholar
  70. Pais P, Salmon CP, Knize MG, Felton JS (1999) J Agric Food Chem 47:1098–1108CrossRefGoogle Scholar
  71. Pereira-Lima CI, Ordonez JA, de Fernando GDG, Cambero MI (2000) Eur Food Res Technol 210:165–172CrossRefGoogle Scholar
  72. Peru KM, Kuchta SL, Headley JV, Cessna AJ (2006) J Chromatogr A 1107:152–158CrossRefGoogle Scholar
  73. Reig M, Toldrá F (2008) Meat Sci 78:60–67CrossRefGoogle Scholar
  74. Reig M, Toldrá F (2009) In: Nollet LML, Toldrá F (eds) Handbook of muscle foods analysis, 1st edn. CRC, Boca Raton, pp 837–854Google Scholar
  75. Rotzoll N, Dunkel A, Hofmann T (2005) J Agric Food Chem 53:4149–4156CrossRefGoogle Scholar
  76. Saito T, Araki K, Matsuyoshi M (1959) Bull Jpn Soc Sci Fish, 749–750Google Scholar
  77. Schlichtherle-Cerny H, Grosch W (1998) Z Lebensm Unters Forsch A Food Res Tech 207:369–376CrossRefGoogle Scholar
  78. Schlichtherle-Cerny H, Affolter M, Cerny C (2003) Anal Chem 75:2349–2354CrossRefGoogle Scholar
  79. Schmelz EM, Merrill AH (1998) Nutrition 14:717–719CrossRefGoogle Scholar
  80. Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH (1996) Cancer Res 56:4936–4941Google Scholar
  81. Schmelz EM, Bushnev AS, Dillehay DL, Liotta DC, Merrill AH (1997) Nutr Cancer Int J 28:81–85CrossRefGoogle Scholar
  82. Schmelz EM, Sullards MC, Dillehay DL, Merrill AH (2000) J Nutr 130:522–527Google Scholar
  83. Simon KW, Roberts PC, Vespremi MJ, Manchen S, Schmelz EM (2009) Mol Nutr Food Res 53:332–340CrossRefGoogle Scholar
  84. Strege MA (1998) Anal Chem 70:2439–2445CrossRefGoogle Scholar
  85. Tikk M, Tikk K, Torngren MA, Meinert L, Aaslyng MD, Karlsson AH, Andersen HJ (2006) J Agric Food Chem 54:7769–7777CrossRefGoogle Scholar
  86. Toldrá F (2006a) Handbook of food science, technology and engineering. 28-1–28-18Google Scholar
  87. Toldrá F (2006b) Trends Food Sci Technol 17:164–168CrossRefGoogle Scholar
  88. Toldrá F, Reig M (2006) Trends Food Sci Technol 17:482–489CrossRefGoogle Scholar
  89. Tranberg M, Stridh MH, Jilderos B, Weber SG, Sandberg M (2005) Anal Biochem 343:179–182CrossRefGoogle Scholar
  90. Volpe G, Mascini M (1996) Talanta 43:283–289CrossRefGoogle Scholar
  91. Wyss M, Kaddurah-Daouk R (2000) Physiol Rev 80:1107–1213Google Scholar
  92. Yano Y, Kataho N, Watanabe M, Nakamura T, Asano Y (1995) Food Chem 52:439–445CrossRefGoogle Scholar
  93. Yoshida T (2004) J Biochem Biophys Meth 60:265–280CrossRefGoogle Scholar
  94. Zheng MM, Zhang MY, Peng GY, Feng YQ (2008) Anal Chim Acta 625:160–172CrossRefGoogle Scholar
  95. Zywicki B, Catchpole G, Draper J, Fiehn O (2005) Anal Biochem 336:178–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leticia Mora
    • 1
  • Aleida S. Hernández-Cázares
    • 1
  • M-Concepción Aristoy
    • 1
  • Fidel Toldrá
    • 1
  • Milagro Reig
    • 2
  1. 1.Instituto de Agroquímica y Tecnología de Alimentos (CSIC)PaternaSpain
  2. 2.Institute of Food Engineering for DevelopmentUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations