Food Analytical Methods

, Volume 2, Issue 1, pp 41–60 | Cite as

Review of Methods to Determine Antioxidant Capacities

  • Ayse Karadag
  • Beraat Ozcelik
  • Samim SanerEmail author


Antioxidant capacity is related with compounds capable of protecting a biological system against the potentially harmful effect of processes or reactions involving reactive oxygen and nitrogen species (ROS and RNS). These protective effects of antioxidants have received increasing attention within biological, medical, nutritional, and agrochemical fields and resulted in the requirement of simple, convenient, and reliable antioxidant capacity determination methods. Many methods which differ from each other in terms of reaction mechanisms, oxidant and target/probe species, reaction conditions, and expression of results have been developed and tested in the literature. In this review, the methods most widely used for the determination of antioxidant capacity are evaluated, presenting the general principals, recent applications, and their strengths and limitations. Analysis conditions, substrate, and antioxidant concentration should simulate real food or biological systems as much as possible when selecting the antioxidant capacity method. The total antioxidant capacity value should include methods applicable to both lipophilic and hydrophilic antioxidants, with regards the similarity and differences of both hydrogen atom transfer and electron transfer mechanism. The methods including various ROS/RNS also have to be designed to comprehensively evaluate the antioxidant capacity of a sample.


Antioxidant Capacity Methods Review Reactive Oxygen Species 


  1. Aboul-Enein HY, Kladna A, Kruk I, Lichszteld K, Michalska T, Olgen S (2005) Scavenging of reactive oxygen species by novel indolin-2-one and indoline-2-thione derivatives. Biopolymers 78:171. doi: 10.1002/bip.20268 Google Scholar
  2. Adom KK, Liu RH (2005) Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J Agric Food Chem 53:6572. doi: 10.1021/jf048318o Google Scholar
  3. Akoh CC, Min DB (1998) Food lipids; chemistry, nutrition and biotechnology, Part IV. Marcel Dekker, New York, pp 432–427Google Scholar
  4. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Critical review: methods for testing antioxidant activity. The Analyst 127:183. doi: 10.1039/b009171p Google Scholar
  5. Apak R, Guclu KG, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric iron reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970. doi: 10.1021/jf048741x Google Scholar
  6. Apak R, Guclu K, Demirata B, Ozyurek M, Celik SE, Bektasoglu B et al (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496Google Scholar
  7. Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413Google Scholar
  8. Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419. doi: 10.1016/S0924-2244(01)00027-9 Google Scholar
  9. Arts MJTJ, Haenen GRMM, Voss H, Bast A (2004) Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem Toxicol 42:45. doi: 10.1016/j.fct.2003.08.004 Google Scholar
  10. Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and pro-oxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880. doi: 10.1021/jf00035a014 Google Scholar
  11. Bastos EL, Romoff P, Eckert CR, Baader WJ (2003) Evaluation of antiradical capacity of H2O2-hemin induced luminol chemiluminescence. J Agric Food Chem 51:7481. doi: 10.1021/jf0345189 Google Scholar
  12. Benov L, Sztenjberg L, Fridovich I (1998) Critical Evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25(7):826. doi: 10.1016/S0891-5849(98)00163-4 Google Scholar
  13. Benzie IFF (2003) Evolution of dietary antioxidants. Comp Biochem Physiol Part A 136:113. doi: 10.1016/S1095-6433(02)00368-9 Google Scholar
  14. Benzie IFF, Chung WY, Strain JJ (1999) Antioxidant (reducing) efficiency of ascorbate in plasma is not affected by concentration. J Nutr Biochem 10:146. doi: 10.1016/S0955-2863(98)00084-9 Google Scholar
  15. Botchway SW, Crisostomo AG, Parker AW, Bisby RH (2007) Near infrared multiphoton-induced generation and detection of hydroxyl radicals in a biochemical system. Arch Biochem Biophys 464:314. doi: 10.1016/ Google Scholar
  16. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25. doi: 10.1016/S0023-6438(95)80008-5 Google Scholar
  17. Caillet S, Yu H, Lessard S, Lamoureux G, Ajdukovic D, Lacroix M (2007) Fenton reaction applied for screening natural antioxidants. Food Chem 100(2):542. doi: 10.1016/j.foodchem.2005.10.009 Google Scholar
  18. Calliste CA, Trouillas P, Allais DP, Simon A, Duroux JL (2001) Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviours of seven plants. J Agric Food Chem 49:3321. doi: 10.1021/jf010086v Google Scholar
  19. Cao G, Sofic E, Prior R (1997) Antioxidant and prooxidant behaviour of flavonoids: structure–activity relationships. Free Radic Biol Med 22(5):749. doi: 10.1016/S0891-5849(96)00351-6 Google Scholar
  20. Cao Y, Chu Q, Ye J (2003) Determination of hydroxyl radical by capillary electrophoresis and studies on hydroxyl radical scavenging activities of Chinese herbs. Anal Bioanal Chem 376:691. doi: 10.1007/s00216-003-1961-7 Google Scholar
  21. Cao QH, Zhou XZ, Cai RX, Zhi HL (2005) Fluorimetric determination of peroxynitrite based on an enzymatic reaction. Anal Sci 21:445Google Scholar
  22. Castro IA, Rogero MM, Junqueria RM, Carropeiro MM (2006) Free radical scavenger and antioxidant capacity correlation of α-tocopherol and Trolox measured by in vitro methodologies. Int J Food Sci Nutr 57(1-2):75. doi: 10.1080/09637480600656199 Google Scholar
  23. Chaudiere J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949. doi: 10.1016/S0278-6915(99)00090-3 Google Scholar
  24. Chen C-W, Chiou J-F, Tsai C-H, Shu C-W, Lin M-H, Liu T-Z, Tsai L-Y (2006) Development of probe-based ultraweak chemiluminescence technique for the detection of a panel of four oxygen-derived free radicals and their applications in the assessment of radical-scavenging abilities of extracts and purified compounds from food and herbal preparations. J Agric Food Chem 54:9297. doi: 10.1021/jf061779k Google Scholar
  25. Cheng Z, Yan G, Li Y, Chang W (2003) Determination of antioxidant activity of phenolic antioxidants in a Fenton-type reaction system by chemiluminescence assay. Anal Bioanal Chem 375:376Google Scholar
  26. Cheng Z, Zhou H, Yin J, Yu L (2007) Electron spin resonance estimation of hydroxyl radical scavenging capacity for lipophilic antioxidants. J Agric Food Chem 55:3325. doi: 10.1021/jf0634808 Google Scholar
  27. Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L et al (2008) The in vitro and ex-vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. Leaves. J Ethnopharmacol 116:439. doi: 10.1016/j.jep.2007.12.010 Google Scholar
  28. De Beer D, Joubert E, Gelderblom WCA, Manley M (2003) Antioxidant activity of South African red and white cultivar wines: free radical scavenging. J Agric Food Chem 51:902. doi: 10.1021/jf026011o Google Scholar
  29. Eberhardt MV, Kobira K, Keck AS, Juvik JA, Jeffery EH (2005) Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. Var. italica). J Agric Food Chem 53:7421Google Scholar
  30. Frankel EN, Meyer AS (2000) The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80(13):1925. doi: 10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4 Google Scholar
  31. Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48(8):3597. doi: 10.1021/jf000220w Google Scholar
  32. Gheldof N, Engeseth NJ (2002) Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem 50:3050. doi: 10.1021/jf0114637 Google Scholar
  33. Glebska J, Koppenol WH (2003) Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic Biol Med 35(6):676. doi: 10.1016/S0891-5849(03)00389-7 Google Scholar
  34. Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7CrossRefGoogle Scholar
  35. Handelman GJ, Cao G, Walter MF, Nightingale ZD, Paul GL, Prior RL et al (1999) Antioxidant capacity of oat (Avena sativa L.) Extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J Agric Food Chem 47:4888. doi: 10.1021/jf990529j Google Scholar
  36. Hassimotto NMA, Genovese MI, Lajolo FM (2005) Antioxidant activity of dietary fruits, vegetables and commercial frozen fruit pulps. J Agric Food Chem 53:2928. doi: 10.1021/jf047894h Google Scholar
  37. Hort MA, DalBó S, Costa Brighente IM, Pizzolatti MG, Pedrosa RC, Ribeiro-do-Valle RM (2008) Antioxidant and hepatoprotective effects of Cyathea phalerata Mart. (Cyatheaceae). Basic Clin Pharmacol Toxicol 103:17–24. doi: 10.1111/j.1742-7843.2008.00214.x Google Scholar
  38. Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and prooxidant activity of bamboo Phyllostachys nigra var. henonis leaf extract in vitro. J Agric Food Chem 48:3170. doi: 10.1021/jf0001637 Google Scholar
  39. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002a) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815. doi: 10.1021/jf0113732 Google Scholar
  40. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002b) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437. doi: 10.1021/jf0201529 Google Scholar
  41. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841. doi: 10.1021/jf030723c Google Scholar
  42. Huang J-C, Li D-J, Diao J-C, Hou J, Yuan J-L, Zou G-L (2007) A novel fluorescent method for determination of peroxynitrite using folic acid as a probe. Talanta 72(4):1283. doi: 10.1016/j.talanta.2007.01.033 Google Scholar
  43. Jaffar N-Z, Dan Z, Christopher S, John BD, Jan K, John H (2006) The use of Pholasin® as a probe for the determination of plasma total antioxidant capacity. Clin Biochem 39(1):55. doi: 10.1016/j.clinbiochem.2005.09.011 Google Scholar
  44. Joshi R, Kumar SM, Satyamoorthy K, Unnikrissan MK, Mukherjee T (2005) Free radical reactions and antioxidant activities of sesamol: pulse radiolytic and biochemical studies. J Agric Food Chem 53:2696. doi: 10.1021/jf0489769 Google Scholar
  45. Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68. doi: 10.1021/jf025781x Google Scholar
  46. Katsube N, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K et al (2004) Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu Assay. J Agric Food Chem 52:2391. doi: 10.1021/jf035372g Google Scholar
  47. Kumaran A, Karunakaran RJ (2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem 97(1):109. doi: 10.1016/j.foodchem.2005.03.032 Google Scholar
  48. Laguerre M, Lecomte J, Villeneuve P (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46:244. doi: 10.1016/j.plipres.2007.05.002 Google Scholar
  49. Lavelli V, Hippeli S, Peri C, Elstner EF (1999) Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J Agric Food Chem 47:3826. doi: 10.1021/jf981372i Google Scholar
  50. Lee JH, Ozcelik B, Min DB (2003) Electron donation mechanisms of β-carotene as a free radical scavenger. J Food Sci 68(3):861. doi: 10.1111/j.1365-2621.2003.tb08256.x Google Scholar
  51. Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging and antioxidative nutraceuticals. Compr Rev Food Sci Saf 3(1):21. doi: 10.1111/j.1541-4337.2004.tb00058.x Google Scholar
  52. Li L, Abe Y, Kanagawa K, Usui N, Imai K, Mashino T, Mochizuki M, Miyata N (2004) Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal Chim Acta 512(1):121. doi: 10.1016/j.aca.2004.02.020 Google Scholar
  53. Liang J, Liu Z-H, Cai R-X (2005) A novel method for determination of peroxynitrite based on hemoglobin catalyzed reaction. Anal Chim Acta 530(2):317. doi: 10.1016/j.aca.2004.09.025 Google Scholar
  54. Ma Z, Zhao B, Yuan, Z (1999) Application of electrochemical and spin trapping techniques in the investigation of hydroxyl radicals. Anal Chim Acta 389:213Google Scholar
  55. MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86(13):2046. doi: 10.1002/jsfa.2603 Google Scholar
  56. Madhujith T, Izydorczyk M, Shahidi F (2006) Antioxidant properties of pearled barley fractions. J Agric Food Chem 54:3283Google Scholar
  57. Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1. doi: 10.1016/j.aca.2008.02.047 Google Scholar
  58. Maranz S, Wiesman Z, Garti N (2003) Phenolic constituents of shea (Vitellaria paradoxa) kernels. J Agric Food Chem 51:6268. doi: 10.1021/jf034687t Google Scholar
  59. Martinez-Tome M, Garcia-Carmona F, Murcia MA (2001) Comparison of the antioxidants and pro-oxidants activities of broccoli amino acids with those of common food additives. J Sci Food Agric 81:1019. doi: 10.1002/jsfa.889 Google Scholar
  60. Mathew S, Abraham TE (2006) Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem 94:520. doi: 10.1016/j.foodchem.2004.11.043 Google Scholar
  61. Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring antioxidant status in premature neonates. Clin Sci 84:407Google Scholar
  62. Min DB, Boff JM (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Saf 1:58. doi: 10.1111/j.1541-4337.2002.tb00007.x Google Scholar
  63. Moore J, Yin J, Yu L (2006) Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation. J Agric Food Chem 54:617. doi: 10.1021/jf052555p Google Scholar
  64. Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150. doi: 10.1021/jf991106k Google Scholar
  65. Nakamura Y, Tsuji S, Tonogai Y (2003) Method for analysis of tannic acid and its metabolites in biological samples: application to tannic acid metabolism in the rat. J Agric Food Chem 51:331. doi: 10.1021/jf020847+ Google Scholar
  66. Nenadis N, Lazaridou O, Tsimidou MZ (2007) Use of reference compounds in antioxidant activity assessment. J Agric Food Chem 55:5452. doi: 10.1021/jf070473q Google Scholar
  67. Niki E (2002) Antioxidant activity: are we measuring it correctly? Nutrition 18:524. doi: 10.1016/S0899-9007(02)00773-6 Google Scholar
  68. Nilsson J, Pillai D, Onning G, Persson C, Nilsson A, Akesson B (2005) Comparison of the 2,2′-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Mol Nutr Food Res 49(3):239. doi: 10.1002/mnfr.200400083 Google Scholar
  69. Ordoudi SA, Tsimidou MZ (2006) Crocin bleaching assay step by step: observations and suggestions for an alternative validated protocol. J Agric Food Chem 54:1663. doi: 10.1021/jf052731u Google Scholar
  70. Ou B, Woodill-Hampsch M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619. doi: 10.1021/jf010586o Google Scholar
  71. Ou B, Huang D, Woodill-Hampsch M, Flanagan JA, Deemer EK (2002a) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122. doi: 10.1021/jf0116606 Google Scholar
  72. Ou B, Huang D, Woodill-Hampsch M, Flanagan JA, Deemer EK, Prior RL, Huang D (2002b) Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric Food Chem 50:2772. doi: 10.1021/jf011480w Google Scholar
  73. Ozcelik B, Lee JH, Min DB (2003) Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl (DPPH). J Food Sci 68(2):487. doi: 10.1111/j.1365-2621.2003.tb05699.x Google Scholar
  74. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller R (2006) Modified ABTS method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and DPPH methods. J Agric Food Chem 54:1151. doi: 10.1021/jf051960d Google Scholar
  75. Perez-Jimenez J, Saura-Calixto F (2008) Anti-oxidant capacity of dietary polyphenols determined by ABTS assay: a kinetic expression of the results. Int J Food Sci Technol 48:185Google Scholar
  76. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27(11–12):1173. doi: 10.1016/S0891-5849(99)00203-8 Google Scholar
  77. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC FL) of plasma and other biological and food samples. J Agric Food Chem 51:3273. doi: 10.1021/jf0262256 Google Scholar
  78. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(8):3101–3113. doi: 10.1021/jf0478861 Google Scholar
  79. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396. doi: 10.1021/jf9913458 Google Scholar
  80. Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156:96. doi: 10.1006/taap.1999.8637 Google Scholar
  81. Reichl S, Vocks A, Petkovic M, Schiller J, Arnhold J (2001) The photoprotein Pholasin as a luminescence substrate for detection of superoxide anion radicals and myeloperoxidase activity in stimulated neutrophils. Free Radic Res 35:723. doi: 10.1080/10715760100301231 Google Scholar
  82. Rivero-Perez MD, Muniz P, Gonzalez-San Jose ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55:5476. doi: 10.1021/jf070306q Google Scholar
  83. Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235. doi: 10.1016/j.foodchem.2004.08.004 Google Scholar
  84. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270. doi: 10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 Google Scholar
  85. Saran M, Summer KH (1999) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic Res 31(5):429. doi: 10.1080/10715769900300991 Google Scholar
  86. Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radic Res 36(2):177. doi: 10.1080/10715760290006411 Google Scholar
  87. Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99(3):478. doi: 10.1016/j.foodchem.2005.08.009 Google Scholar
  88. Stratil P, Klejdus B, Kuban V (2006) Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophotometric methods. J Agric Food Chem 54:607. doi: 10.1021/jf052334j Google Scholar
  89. Tai C, Gu X, Zou H, Guo Q (2002) A new simple and sensitive fluorometric method for the determination of hydroxyl radical and its application. Talanta 58(4):661. doi: 10.1016/S0039-9140(02)00370-3 Google Scholar
  90. Tubaro F, Ghiselli A, Papuzzi P, Maiorino M, Ursini F (1998) Analysis of plasma antioxidant capacity by competition kinetics. Free Radic Biol Med 24:1228. doi: 10.1016/S0891-5849(97)00436-X Google Scholar
  91. Valkonen M, Kuusi T (1997) Spectrophotometric assay for total peroxyl radical trapping antioxidant potential in human serum. J Lipid Res 38:823Google Scholar
  92. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46(10):4113. doi: 10.1021/jf9801973 Google Scholar
  93. Vertuani S, Bosco E, Braccioli E, Manfredini S (2004) Water soluble antioxidant capacity of different teas. Determination by Photochemiluminescence. Nutrafoods 3(2):05Google Scholar
  94. Vinson JA, Su XH, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315. doi: 10.1021/jf0009293 Google Scholar
  95. Wang Q, Ding F, Zhub N, Li H, Hea P, Fang Y (2003a) Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection. J Chromatogr A 1016:123. doi: 10.1016/S0021-9673(03)01294-9 Google Scholar
  96. Wang M, Simon JE, Aviles IF, He K, Zheng Q, Tadmor Y (2003b) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L). J Agric Food Chem 51(3):601. doi: 10.1021/jf020792b Google Scholar
  97. Whitehead TP, Thorpe GHG, Maxwell SRJ (1992) Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta 266:265. doi: 10.1016/0003-2670(92)85052-8 Google Scholar
  98. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods and dietary supplements. J Agric Food Chem 55:8896. doi: 10.1021/jf0715166 Google Scholar
  99. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418Google Scholar
  100. Wu X, Beecher G, Holden J, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026. doi: 10.1021/jf049696w Google Scholar
  101. Yang X, Guo X, Zhao Y (2002) Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta 57:883Google Scholar
  102. Yoshioka H, Ohashi Y, Akaboshi M, Senba Y, Yoshioka H (2001) A novel method of measuring hydroxyl radical-scavenging activity of antioxidants using γ-irradiation. Free Radic Res 35:265. doi: 10.1080/10715760100300801 Google Scholar
  103. Zakharova EA, Yurmazova TA, Nazarov BF, Wildgoose GG, Compton RG (2007) The voltammetric determination of peroxynitrite at a mercury film electrode. N J Chem 31:394. doi: 10.1039/b615188d Google Scholar
  104. Zhang H, Joseph J, Vasquez-Vivar J, Karoui H, Nsanzumuhire C, Martasek P, Tordo P, Kalyanaraman B (2000) Detection of superoxide anion using an isotopically labelled nitrone spin trap: potential biological applications. FEBS Lett 473:58. doi: 10.1016/S0014-5793(00)01498-8 Google Scholar
  105. Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34(11):1359. doi: 10.1016/S0891-5849(03)00142-4 Google Scholar
  106. Zhu BZ, Kitrosky N, Chevion M (2000) Evidence of production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide. A metal-independent organic Fenton reaction. Biochem Biophys Res Commun 270:942. doi: 10.1006/bbrc.2000.2539 Google Scholar
  107. Zou H, Tai C, Gu X-X, Zhu R-H, Guo, Q-H (2002) A new simple and rapid electrochemical method for the determination of hydroxyl radical generated by Fenton reaction and its application. Anal Bioanal Chem 373:111Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of Chemical and MetallurgicalIstanbul Technical UniversityIstanbulTurkey
  2. 2.Kalite Sistem Laboratories GroupIstanbulTurkey

Personalised recommendations