Oncology Reviews

, Volume 3, Issue 1, pp 51–57 | Cite as

The rationale for early detection and treatment of brain tumors in survivors of childhood cancer

  • Lawrence D. Recht
  • Griffith HarshIV
  • Harvey J. Cohen


Survivors of childhood cancer have a relatively high risk of developing second cancers. The incidence of brain tumor in these patients approaches 1% at 10 years, over 80-fold that in the general population. This high incidence increases the likelihood that early detection of brain tumors in survivors of childhood cancer is feasible. By analogy with other epithelial cancers, detection and treatment of brain tumors at a pre-neoplastic or pre-malignant stage may render screening and treatment cost effective for certain high-risk populations. Our animal studies with a clinically appropriate model of this condition suggest that there is a pre-neoplastic, pre-malignant brain tumor lesion that is potentially both detectable and effectively treated. The possibility of detecting such a treatable antecedent to brain tumors provides the rationale for genomic and proteomic screening of tumor tissue, CSF, plasma and urine in this animal model, of tumor tissue and body fluids of patients with known brain tumors at various stages, and of body fluids of survivors of childhood cancer.


Primary brain tumor Cancer screening Childhood cancer survivors MRI Early detection 


Conflict of interest statement

The authors declare that they have no conflict of interest to the publication of this article.


  1. 1.
    Investigators T.I.E.L.C.A.P. (2006) Survival of patients with Stage I lung cancer detected on CT screening. New Engl J Med 355:1763–1771Google Scholar
  2. 2.
    States, C.C.B.T.R. o. t. U. (1997) Annual report. Central Brain Tumor Registry of the United States, ChicagoGoogle Scholar
  3. 3.
    Wrensch M, Minn Y, Chew T et al (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncology 4:278–299PubMedCrossRefGoogle Scholar
  4. 4.
    Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108PubMedCrossRefGoogle Scholar
  5. 5.
    Neglia JP, Robison LL, Stovall et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Canc Inst 98:1528–1537Google Scholar
  6. 6.
    Neglia JP, Meadows AT, Robison LL (1991) Second neoplasms after acute lymphoblastic leukemia in childhood. New Engl J Med 325:1330–1336PubMedCrossRefGoogle Scholar
  7. 7.
    Salvati M, Artico M, Caruso R et al (1991) A report on radiation-induced gliomas. Cancer 67:392–397PubMedCrossRefGoogle Scholar
  8. 8.
    Shapiro S, Mealey J, Sartorius C (1989) Radiation-induced intracranial malignant gliomas. J Neurosurg 71:77–82PubMedCrossRefGoogle Scholar
  9. 9.
    Selikoff IJ, Hammond EC (1982) Brain tumors in the chemical industry. Ann New York Acad Sci 381:1–364CrossRefGoogle Scholar
  10. 10.
    Clapp RW (2006) Mortality among US employees of a large computer manufacturing company: 1969–2001. Environ Health 5:1–10CrossRefGoogle Scholar
  11. 11.
    Bates MN (2007) Registry-based case-control study of cancer in California firefighters. Am J Industrial Med 50:339–344CrossRefGoogle Scholar
  12. 12.
    Carozza SE, Wrensch M, Miike R (2000) Occupation and adult gliomas. Am J Epidemiology 152:838–846CrossRefGoogle Scholar
  13. 13.
    Bullman TA, Mahan CM, Kang HK, Page WF (2005) Mortality in US army gulf war veterans exposed to 1991 Khamisiyah chemical munitions destruction. Am J Public Health 95:1382–1388PubMedCrossRefGoogle Scholar
  14. 14.
    Mike V, Meadows AT, D’Angio GJ (1982) Incidence of second malignant neoplasms in children: results of an international study. Lancet 2:1326–1331PubMedCrossRefGoogle Scholar
  15. 15.
    Walter AW, Hancock ML, Pui CH et al (1998) Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J Clin Oncol 16:3761–3767PubMedGoogle Scholar
  16. 16.
    Ivankovic S, Druckrey H (1968) Transplacentare Erzeugung maligner tumoren des Nervensystems. I. Äthyl-nitroso-harnstoff (ÄNH) an BD IX-ratten. Z Krebsforsch 71:320–360PubMedCrossRefGoogle Scholar
  17. 17.
    Druckrey H, Landschütz C, Ivankovic S (1970) Transplacental induction of malignant tumors of the nervous system. II. Ethylnitrosourea in 10 genetically defined strains of rats. Z Krebsforsch 73:371–386PubMedCrossRefGoogle Scholar
  18. 18.
    Druckrey H, Ivankovic S, Preussmann R (1966) Teratogenic and carcinogenic effects in the offspring after a single injection of ethylnitrosourea to pregnant rats. Nature 210:1378–1379PubMedCrossRefGoogle Scholar
  19. 19.
    Zook BC, Simmens SJ, Jones R (2000) Evaluation of ENU-induced gliomas in rats: nomenclature, immunohistochemistry, and malignancy. Toxicol Pathol 28:193–201PubMedCrossRefGoogle Scholar
  20. 20.
    Ikeda T, Mashimoto H, Iwasaki K (1989) A sequential ultrastructural and histoautoradiographic study of early neoplastic lesions in ethylnitrosourea-induced rat glioma. Acta Pathol Jpn 39:487–495PubMedGoogle Scholar
  21. 21.
    Pilkington GJ, Lantos PL (1979) The development of experimental brain tumors. A sequential light and electron microscope study of the subependymal plate. II. Microtumors. Acta Neuropathol (Berl) 45:177–185CrossRefGoogle Scholar
  22. 22.
    Lantos PL, Pilkington GJ (1979) The development of experimental brain tumors. A sequential light and electron microscope study of the subependymal plate. I. Early lesions (Abnormal cell clusters). Acta Neuropathol 45:167–175PubMedCrossRefGoogle Scholar
  23. 23.
    Lantos PL, Cox DJ (1976) The origin of experimental brain tumours: a sequential study. Experientia 32:1467–1468PubMedCrossRefGoogle Scholar
  24. 24.
    Mennel HD, Simon H (1985) Morphology of early stages of ENU-induced brain tumors in rats. Exp Pathol 28:207–214PubMedGoogle Scholar
  25. 25.
    Schiffer D, Giordana MT, Pezzotta S et al (1978) Cerebral tumors induced by transplacental ENU: study of the different tumoral stages, particularly of early proliferations. Acta Neuropathol 41:27–31PubMedCrossRefGoogle Scholar
  26. 26.
    Schiffer D, Giordana MT, Mauro A et al (1980) Experimental brain tumors by transplacental ENU. Multifactorial study of the latency period. Acta Neuropathol 49:117–122PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshino T, Motoi M, Ogawa K (1985) Immunohistochemical studies on cellular character of microtumors induced by ethylnitrosourea in the rat brain utilizing anti-Leu 7 and anti-glial fibrillary acidic protein antibodies. Acta Neuropathol 66:167–169PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshino T, Motoi M, Ogawa K (1985) Morphological maturation of tumor cells induced by ethylnitrosourea (ENU) in rat brains. I. On the tumors by administration of ENU in the late gestational stage. Acta Pathol Jpn 35:1385–1396PubMedGoogle Scholar
  29. 29.
    Yoshino T (1985) Morphological maturation of tumor cells induced by ethylnitrosourea (ENU) in rat brains. II. On the tumors by administration of ENU in the mid-gestational stage. Acta Pathol Jpn 35:1397–1408PubMedGoogle Scholar
  30. 30.
    Jang T, Litofsky NS, Smith TS et al (2004) Aberrant nestin expression during ethylnitrosourea-(ENU)-induced neurocarcinogenesis. Neurobiol Dis 15:544–552PubMedCrossRefGoogle Scholar
  31. 31.
    Senger DR, Wirth DF, Hynes RO (1979) Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16:885–893PubMedCrossRefGoogle Scholar
  32. 32.
    Jang T, Sathy B, Hsu Y-H et al (2008) Gliomas undergo a distinct phenotypic change at the time of MRI detection. J Neurosurg 108:782–790PubMedCrossRefGoogle Scholar
  33. 33.
    Vernooij MW, Ikram MA, Tanghe HL et al (2007) Incidental findings on brain MRI in the general population. New Engl J Med 357:1821–1828PubMedCrossRefGoogle Scholar
  34. 34.
    Diamandis EP (1998) Prostate-specific antigen: its usefulness in clinical medicine. Trends Endocrinol Metab 9:310–316PubMedCrossRefGoogle Scholar
  35. 35.
    Khwaja FW, Reed MS, Olson JJ et al (2007) Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients. J Proteome Res 6:559–570PubMedCrossRefGoogle Scholar
  36. 36.
    Khwaja FW, Larkin Nolen JD, Mendrinos SE et al (2006) Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Proteomics 6:6277–6287PubMedCrossRefGoogle Scholar
  37. 37.
    Khwaja FW, Duke-Cohan JS, Brat DJ (2006) Attractin is elevated in the cerebrospinal fluid of patients with malignant astrocytoma and mediates glioma cell migration. Clinical Cancer Res 12:6331–6336CrossRefGoogle Scholar
  38. 38.
    Hormigo A, Gu B, Karimi S et al (2006) YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clinical Canc Res 12:5698–5704CrossRefGoogle Scholar
  39. 39.
    Tanwar MK, Gilbert MR, Holland EC (2002) Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 62:4364–4368PubMedGoogle Scholar
  40. 40.
    Zhang H, Wu G, Tu H, Huang F (2007) Discovery of serum biomarkers in astrocytoma by SELDI-TOF MS and proteinchip technology. J Neurooncol 84:315–323PubMedCrossRefGoogle Scholar
  41. 41.
    Arber N, Eagle CJ, Spicak J et al (2006) Celecoxib for the prevention of colorectal adenomatous polyps. New Engl J Med 2006:885–895CrossRefGoogle Scholar
  42. 42.
    Yamanaka R, Itoh K (2007) Peptide-based immunotherapeutic approaches to glioma: a review. Expert Opin Biol Ther 7:645–649PubMedCrossRefGoogle Scholar
  43. 43.
    Skog J (2006) Glioma-specific antigens for immune tumor therapy. Expert Rev Vaccines 5:793–802PubMedCrossRefGoogle Scholar
  44. 44.
    Prins RM, Liau LM (2004) Cellular immunity and immunotherapy of brain tumors. Front Biosci 9:3124–3136PubMedCrossRefGoogle Scholar
  45. 45.
    Weller M, Fontana A (1995) The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-b, T-cell apoptosis, and the immune privilege of the brain. Brain Res Rev 21:128–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lawrence D. Recht
    • 1
  • Griffith HarshIV
    • 1
  • Harvey J. Cohen
    • 2
  1. 1.Department of NeurologyStanford University School of MedicineStanfordUSA
  2. 2.Department of PediatricsStanford University School of MedicineStanfordUSA

Personalised recommendations