Oncology Reviews

, Volume 2, Issue 4, pp 203–213 | Cite as

MicroRNAs in the diagnosis, prognosis and treatment of cancer

  • Violaine Havelange
  • Catherine E. A. Heaphy
  • Ramiro Garzon
Review

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate critical cell processes such as cell proliferation, apoptosis and differentiation by modulating gene expression. MiRNAs deregulation has been observed extensively in cancer. Elegant studies have demonstrated that miRNAs are involved in the initiation and progression of several malignancies. In this review we will address the role of miRNAs in the diagnosis and prognosis of cancer. The development of new drugs mimicking or blocking miRNAs will be discussed.

Keywords

MicroRNAs Cancer MiRNAs profiling Diagnosis Prognosis Treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedGoogle Scholar
  2. 2.
    Karp X, Ambros V (2005) Developmental biology Encountering microRNAs in cell fate signaling. Science 25:1288–1289Google Scholar
  3. 3.
    Kajimoto K, Naraba H and Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12:1626–1632PubMedGoogle Scholar
  4. 4.
    Nature Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220Google Scholar
  5. 5.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86PubMedGoogle Scholar
  6. 6.
    Poy MN, Eliasson L, Krutzfeldt J et al (2004) Pancreatic isletspecific microRNA regulates insulin secretion. Nature 432: 226–230PubMedGoogle Scholar
  7. 7.
    Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297PubMedGoogle Scholar
  8. 8.
    Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132PubMedGoogle Scholar
  9. 9.
    Tang X, Tang G, Ozcan S (2008) Role of microRNAs in diabetes. Biochim Biophys Acta. [Epub ahead of print].Google Scholar
  10. 10.
    Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358PubMedGoogle Scholar
  11. 11.
    Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res. 32(Database issue):D109–D111PubMedGoogle Scholar
  12. 12.
    Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65:3509–3512PubMedGoogle Scholar
  13. 13.
    Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511PubMedGoogle Scholar
  14. 14.
    Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596PubMedGoogle Scholar
  15. 15.
    Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553–563PubMedGoogle Scholar
  16. 16.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Mol Cell 30:460–471PubMedGoogle Scholar
  17. 17.
    Duursma AM, Kedde M, Schrier M et al (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877PubMedGoogle Scholar
  18. 18.
    Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089PubMedGoogle Scholar
  19. 19.
    Vasudevan S, Tong Y, Steitz JA (2008) Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7:1545–1549PubMedGoogle Scholar
  20. 20.
    Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345PubMedGoogle Scholar
  21. 21.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedGoogle Scholar
  22. 22.
    Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Letters 579:5904–5910PubMedGoogle Scholar
  23. 23.
    Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedGoogle Scholar
  24. 24.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949PubMedGoogle Scholar
  25. 25.
    Dyer MJ, Zani VJ, Lu WZ et al (1994) BCL2 translocations in leukemias of mature B cells. Blood 83:3682–3688PubMedGoogle Scholar
  26. 26.
    Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261PubMedGoogle Scholar
  27. 27.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedGoogle Scholar
  28. 28.
    McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253–258PubMedGoogle Scholar
  29. 29.
    Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768–1771PubMedGoogle Scholar
  30. 30.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12PubMedGoogle Scholar
  31. 31.
    Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedGoogle Scholar
  32. 32.
    Michael MZ, O’ Connor SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891PubMedGoogle Scholar
  33. 33.
    Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedGoogle Scholar
  34. 34.
    Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906PubMedGoogle Scholar
  35. 35.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1) J Biol Chem 282:14328–14336PubMedGoogle Scholar
  36. 36.
    Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033PubMedGoogle Scholar
  37. 37.
    van den Berg A, Kroesen BJ, Kooistra K et al (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37:20–28PubMedGoogle Scholar
  38. 38.
    Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632PubMedGoogle Scholar
  39. 39.
    Kluiver J, Poppema S, de Jong D et al (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249PubMedGoogle Scholar
  40. 40.
    Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029PubMedGoogle Scholar
  41. 41.
    Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedGoogle Scholar
  42. 42.
    Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095PubMedGoogle Scholar
  43. 43.
    Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19:2013–2016PubMedGoogle Scholar
  44. 44.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833PubMedGoogle Scholar
  45. 45.
    Haverty PM, Fridlyand J, Li L et al (2008) High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 47:530–542PubMedGoogle Scholar
  46. 46.
    Ruiz-Ballesteros E, Mollejo M, Mateo M et al (2007) MicroRNA losses in the frequently deleted region of 7q in SMZL. Leukemia 21:2547–2549PubMedGoogle Scholar
  47. 47.
    Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedGoogle Scholar
  48. 48.
    Gauwerky CE, Huebner K, Isobe M et al (1989) Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci USA 86:8867–8871PubMedGoogle Scholar
  49. 49.
    Schwindt H, Akasaka T, Zühlke-Jenisch R et al (2006) Chromosomal translocations fusing the BCL6 gene to different partner loci are recurrent in primary central nervous system lymphoma and may be associated with aberrant somatic hypermutation or defective class switch recombination. J Neuropathol Exp Neurol 65:776–782PubMedGoogle Scholar
  50. 50.
    Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742PubMedGoogle Scholar
  51. 51.
    Xiao C, Srinivasan L, Calado DP et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414PubMedGoogle Scholar
  52. 52.
    Zhang L, Huang J, Yang N et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141PubMedGoogle Scholar
  53. 53.
    Calin GA, Croce CM (2007) Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 117:2059–2066PubMedGoogle Scholar
  54. 54.
    Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedGoogle Scholar
  55. 55.
    Sevignani C, Calin GA, Nnadi SC et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022PubMedGoogle Scholar
  56. 56.
    Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801PubMedGoogle Scholar
  57. 57.
    Wu M, Jolicoeur N, Li Z et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716PubMedGoogle Scholar
  58. 58.
    He H, Jazdzewski K, Li W et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080PubMedGoogle Scholar
  59. 59.
    Saito Y, Liang G, Egger G, et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443PubMedGoogle Scholar
  60. 60.
    Brueckner B, Stresemann C, Kuner R et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423PubMedGoogle Scholar
  61. 61.
    Fazi F, Racanicchi S, Zardo G et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12:457–466PubMedGoogle Scholar
  62. 62.
    Kozaki K, Imoto I, Mogi S et al (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105PubMedGoogle Scholar
  63. 63.
    Lujambio A, Ropero S, Ballestar E et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429. [Erratum, Cancer Res 67:3492]PubMedGoogle Scholar
  64. 64.
    Meng F, Wehbe-Janek H, Henson R et al (2008) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27:378–386PubMedGoogle Scholar
  65. 65.
    Lehmann U, Hasemeier B, Christgen M et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24PubMedGoogle Scholar
  66. 66.
    Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810PubMedGoogle Scholar
  67. 67.
    Karube Y, Tanaka H, Osada H et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115PubMedGoogle Scholar
  68. 68.
    Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677PubMedGoogle Scholar
  69. 69.
    Chiosea S, Jelezcova E, Chandran U et al (2007) Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 67:2345–2350PubMedGoogle Scholar
  70. 70.
    Chiosea S, Jelezcova E, Chandran U et al (2006) Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 169:1812–1820PubMedGoogle Scholar
  71. 71.
    Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742PubMedGoogle Scholar
  72. 72.
    O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedGoogle Scholar
  73. 73.
    Woods K, Thomson JM, Hammond SM (2007) Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282:2130–2144PubMedGoogle Scholar
  74. 74.
    He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedGoogle Scholar
  75. 75.
    Fulci V, Chiaretti S, Goldoni M et al (2007) Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109:4944–4951PubMedGoogle Scholar
  76. 76.
    Kluiver J, Haralambieva E, de Jong D et al (2006) Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45:147–153PubMedGoogle Scholar
  77. 77.
    Tagawa H, Karube K, Tsuzuki S et al (2007) Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci 98:1482–1490PubMedGoogle Scholar
  78. 78.
    Navarro A, Gaya A, Martinez A et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111:2825–2832PubMedGoogle Scholar
  79. 79.
    O’Hara AJ, Vahrson W, Dittmer DP (2008) Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma. Blood 111:2347–2353PubMedGoogle Scholar
  80. 80.
    Bruchova H, Yoon D, Agarwal AM et al (2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 35:1657–1667PubMedGoogle Scholar
  81. 81.
    Guglielmelli P, Tozzi L, Pancrazzi A et al (2007) MPD Research Consortium. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol 35:1708–1718Google Scholar
  82. 82.
    Landais S, Landry S, Legault P, Rassart E (2007) Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67:5699–5707PubMedGoogle Scholar
  83. 83.
    Debernardi S, Skoulakis S, Molloy G et al (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21:912–916PubMedGoogle Scholar
  84. 84.
    Jongen-Lavrencic M, Sun SM, Dijkstra MK et al (2008) MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111:5078–5085PubMedGoogle Scholar
  85. 85.
    Garzon R, Garofalo M, Martelli MP et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin Proc Natl Acad Sci USA 105:3945–3950PubMedGoogle Scholar
  86. 86.
    Wong TS, Liu XB, Wong BY et al (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14:2588–2592PubMedGoogle Scholar
  87. 87.
    Feber A, Xi L, Luketich JD et al (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255–260; discussion 260PubMedGoogle Scholar
  88. 88.
    Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436PubMedGoogle Scholar
  89. 89.
    Bandrés E, Cubedo E, Agirre X et al (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29PubMedGoogle Scholar
  90. 90.
    Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906PubMedGoogle Scholar
  91. 91.
    Jiang J, Gusev Y, Aderca I et al 2008) Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 14:419–427PubMedGoogle Scholar
  92. 92.
    Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedGoogle Scholar
  93. 93.
    Stutes M, Tran S, Demorrow S (2007) Genetic and epigenetic changes associated with cholangiocarcinoma: from DNA methylation to microRNAs. World J Gastroenterol 13:6465–6469PubMedGoogle Scholar
  94. 94.
    Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908PubMedGoogle Scholar
  95. 95.
    Roldo C, Missiaglia E, Hagan JP et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24:4677–4684PubMedGoogle Scholar
  96. 96.
    Szafranska AE, Davison TS, John J et al (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26:4442–4452PubMedGoogle Scholar
  97. 97.
    Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198PubMedGoogle Scholar
  98. 98.
    Iorio MV, Visone R, Di Leva G et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707PubMedGoogle Scholar
  99. 99.
    Lee JW, Choi CH, Choi JJ et al (2008) Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 14:2535–2542PubMedGoogle Scholar
  100. 100.
    Voorhoeve PM, le Sage C, Schrier M et al (2007) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol 604:17–46PubMedGoogle Scholar
  101. 101.
    Weber F, Teresi RE, Broelsch CE et al (2006) A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91:3584–3591PubMedGoogle Scholar
  102. 102.
    Pallante P, Visone R, Ferracin M et al (2006) MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13:497–508PubMedGoogle Scholar
  103. 103.
    Gottardo F, Liu CG, Ferracin M et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392PubMedGoogle Scholar
  104. 104.
    Ciafrè SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedGoogle Scholar
  105. 105.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedGoogle Scholar
  106. 106.
    Liu CG, Calin GA, Meloon B et al (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744PubMedGoogle Scholar
  107. 107.
    Liu CG, Calin GA, Volinia S, Croce CM (2008) MicroRNA expression profiling using microarrays. Nat Protoc 3:563–578PubMedGoogle Scholar
  108. 108.
    Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedGoogle Scholar
  109. 109.
    Takada S, Mano H (2007) Profiling of microRNA expression by mRAP. Nat Protoc 2:3136–3145PubMedGoogle Scholar
  110. 110.
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedGoogle Scholar
  111. 111.
    Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620PubMedGoogle Scholar
  112. 112.
    Garzon R, Volinia S, Liu CG et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111:3183–3189PubMedGoogle Scholar
  113. 113.
    Marcucci G, Radmacher MD, Maharry K et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358:1919–1928PubMedGoogle Scholar
  114. 114.
    Bottoni A, Piccin D, Tagliati F et al (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285PubMedGoogle Scholar
  115. 115.
    Xi Y, Formentini A, Chien M et al (2006) Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights 2:113–121PubMedGoogle Scholar
  116. 116.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688PubMedGoogle Scholar
  117. 117.
    Yu SL, Chen HY, Chang GC et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57PubMedGoogle Scholar
  118. 118.
    Lu L, Katsaros D, de la Longrais IA et al (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122PubMedGoogle Scholar
  119. 119.
    Inamura K, Togashi Y, Nomura K et al (2007) let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a noninvasive carcinoma, and is not correlated with prognosis. Lung Cancer 58:392–396PubMedGoogle Scholar
  120. 120.
    Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129PubMedGoogle Scholar
  121. 121.
    Salter KH, Acharya CR, Walters KS et al (2008) An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS ONE 3(4):e1908PubMedGoogle Scholar
  122. 122.
    Blower PE, Chung JH, Verducci JS et al (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9PubMedGoogle Scholar
  123. 123.
    Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with antagomirs. Nature 438:685–689PubMedGoogle Scholar
  124. 124.
    Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3:e2236PubMedGoogle Scholar
  125. 125.
    Naguibneva I, Ameyar-Zazoua M, Nonne N et al (2006) An LNA-based loss-of-function assay for micro-RNAs. Biomed Pharmacother 60:633–638PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Violaine Havelange
    • 2
    • 3
  • Catherine E. A. Heaphy
    • 1
  • Ramiro Garzon
    • 1
  1. 1.Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  2. 2.Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  3. 3.Hematological section of the Human Genetic CenterUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations