Advertisement

New Insight into Enzymatic Hydrolysis of the Rice Straw and Poplar: an In-depth Statistical Analysis on the Multiscale Recalcitrance

  • Mingren Liu
  • Lei Wang
  • Mengying Si
  • Zhongren Wang
  • Tingzheng Zhang
  • Xunqiang Cheng
  • Xiaobo Min
  • Liyuan Chai
  • Yan ShiEmail author
Article
  • 67 Downloads

Abstract

Certain substrate-related parameters that determine sugar release from pretreated lignocellulosic biomass are important for the biorefinery process optimization. Unfortunately, phylogenetical differences in plants often complicate physicochemical variances and mask mechanisms of biomass recalcitrance. Herein, an in-depth statistical approach that combines correlation analysis, principal component analysis, multiple linear regression, and multiscale validation procedures was employed to comprehensively analyze 14 compositional and structural parameters of cell wall collected after acid and base pretreatment. Individual and sequential analysis provided quantitative proof of lignin-relevant parameters as particular constraints for sugar release in two typical plants, the rice straw (Oryza sativa) and poplar (Populus girinensis). More striking contributions of lignin removal to xylose release were found in both biomasses, while the combination of crystallinity index (CrI) and CrI/glucan highlighted the specific hindrance of crystallinity of cellulose to glucose release. The compositional changes of lignin additionally affected glucose release in rice straw, while functional groups of lignin played a less pronounced role in poplar. The direct impacts of xylan removal and concomitant changes in biomass porosities insignificantly improved the sugar release. These results suggest that innate differences in diverse plants and the targeted sugar species should be considered when designing proper pretreatment for efficient enzymatic hydrolysis.

Keywords

Enzymatic hydrolysis Statistical analysis Lignin Cellulose crystallinity Biomass porosity NMR 

Notes

Acknowledgements

This work was supported by key project of the National Natural Science Foundation of China (51634010, 31400115, 51474102).

Supplementary material

12155_2019_9959_MOESM1_ESM.docx (7.5 mb)
ESM 1 (DOCX 7690 kb)

References

  1. 1.
    Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Sicence 338(6110):1055–1060.  https://doi.org/10.1126/science.1227491 CrossRefGoogle Scholar
  2. 2.
    Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels 6(1):15.  https://doi.org/10.1186/1754-6834-6-15 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    DeMartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6(3):898–909.  https://doi.org/10.1039/C3EE23801F CrossRefGoogle Scholar
  4. 4.
    Meng X, Pu Y, Yoo CG, Li M, Bali G, Park DY, Gjersing E, Davis MF, Muchero W, Tuskan GA, Tschaplinski TJ, Ragauskas AJ (2017) An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem 10(1):139–150.  https://doi.org/10.1002/cssc.201601303 CrossRefPubMedGoogle Scholar
  5. 5.
    Yoo CG, Yang Y, Pu Y, Meng X, Muchero W, Yee KL, Thompson OA, Rodriguez M, Bali G, Engle NL, Lindquist E, Singan V, Schmutz J, DiFazio SP, Tschaplinski TJ, Tuskan GA, Chen JG, Davison B, Ragauskas AJ (2017) Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion. Green Chem 19(22):5467–5478.  https://doi.org/10.1039/c7gc02219k CrossRefGoogle Scholar
  6. 6.
    Pihlajaniemi V, Sipponen MH, Liimatainen H, Sirviö JA, Nyyssölä A, Laakso S (2016) Weighing the factors behind enzymatic hydrolyzability of pretreated lignocellulose. Green Chem 18(5):1295–1305.  https://doi.org/10.1039/c5gc01861g CrossRefGoogle Scholar
  7. 7.
    Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105(5):871–879.  https://doi.org/10.1002/bit.22626 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824.  https://doi.org/10.1002/bit.20282 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761.  https://doi.org/10.1038/nbt1316 CrossRefPubMedGoogle Scholar
  10. 10.
    Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617.  https://doi.org/10.1002/bit.20750 CrossRefPubMedGoogle Scholar
  11. 11.
    Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45.  https://doi.org/10.1016/j.copbio.2013.09.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Jung HG, Casler MD (2006) Maize stem tissues: impact of development on cell wall degradability. Crop Sci 46(4):1801CrossRefGoogle Scholar
  13. 13.
    Studer M, DeMartini JD, MF Davis RW, Sykesb BD, Keller M et al (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108(15):6300–6305.  https://doi.org/10.1073/pnas.1009252108 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun S, Huang Y, Sun R, Tu M (2016) The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem 18(15):4276–4286.  https://doi.org/10.1039/c6gc00685j CrossRefGoogle Scholar
  15. 15.
    Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548.  https://doi.org/10.1002/bit.22981 CrossRefPubMedGoogle Scholar
  16. 16.
    Langan P, Petridis L, O'Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16(1):63–68.  https://doi.org/10.1039/c3gc41962b CrossRefGoogle Scholar
  17. 17.
    Meng X, Wells T, Sun Q, Huang F, Ragauskas A (2015) Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem 17(8):4239–4246.  https://doi.org/10.1039/c5gc00689a CrossRefGoogle Scholar
  18. 18.
    Leu S-Y, Zhu JY (2012) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. BioEnergy Res 6(2):405–415.  https://doi.org/10.1007/s12155-012-9276-1 CrossRefGoogle Scholar
  19. 19.
    Cheng G, Zhang X, Simmons B, Singh S (2015) Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy Environ Sci 8(2):436–455.  https://doi.org/10.1039/c4ee03147d CrossRefGoogle Scholar
  20. 20.
    Chen H, Zhao X, Liu D (2016) Relative significance of the negative impacts of hemicelluloses on enzymatic cellulose hydrolysis is dependent on lignin content: evidence from substrate structural features and protein adsorption. ACS Sustain Chem Eng 4(12):6668–6679.  https://doi.org/10.1021/acssuschemeng.6b01540 CrossRefGoogle Scholar
  21. 21.
    Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93(3):443–456.  https://doi.org/10.1002/bit.20730 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang K, Si M, Liu D, Zhuo S, Liu M, Liu H, Yan X, Shi Y (2018) A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass. Biotechnol. Biofuels 11:31.  https://doi.org/10.1186/s13068-018-1035-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xu J, Zong M-H, Fu S-Y, Li N (2016) Correlation between physicochemical properties and enzymatic digestibility of rice straw pretreated with Cholinium ionic liquids. ACS Sustain Chem Eng 4(8):4340–4345.  https://doi.org/10.1021/acssuschemeng.6b00860 CrossRefGoogle Scholar
  24. 24.
    Liu D, Yan X, Zhuo S, Si M, Liu M, Wang S, Ren L, Chai L, Shi Y (2018) Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization. Bioresour Technol 257:62–68.  https://doi.org/10.1016/j.biortech.2018.02.029 CrossRefPubMedGoogle Scholar
  25. 25.
    Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol 245 (Pt A) 245:419–425.  https://doi.org/10.1016/j.biortech.2017.08.037 CrossRefGoogle Scholar
  26. 26.
    Wen J-L, Sun S-L, Yuan T-Q, Sun R-C (2015) Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis. Green Chem 17(3):1589–1596.  https://doi.org/10.1039/c4gc01889c CrossRefGoogle Scholar
  27. 27.
    Chai L, Liu M, Yan X, Cheng X, Zhang T, Si M, Min X, Shi Y (2018) Elucidating the interactive impacts of substrate-related properties on lignocellulosic biomass digestibility: a sequential analysis. ACS Sustain Chem Eng 6:6783–6791.  https://doi.org/10.1021/acssuschemeng.8b00592 CrossRefGoogle Scholar
  28. 28.
    Xiao R, Ye T, Wei Z, Luo S, Yang Z, Spinney R (2015) Quantitative structure—activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical. Environ Sci Technol 49(22):13394–13402.  https://doi.org/10.1021/acs.est.5b03078 CrossRefPubMedGoogle Scholar
  29. 29.
    Djioleu A, Carrier DJ (2018) A statistical approach for the identification of cellulolytic enzyme inhibitors using switchgrass dilute acid prehydrolyzates as a model system. ACS Sustain Chem Eng 6:3443–3452.  https://doi.org/10.1021/acssuschemeng.7b03686 CrossRefGoogle Scholar
  30. 30.
    Luo S, Wei Z, Spinney R, Yang Z, Chai L, Xiao R (2017) A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds. Chemosphere 172:333–340.  https://doi.org/10.1016/j.chemosphere.2017.01.014 CrossRefPubMedGoogle Scholar
  31. 31.
    Li M, Pattathil S, Hahn MG, Hodge DB (2014) Identification of features associated with plant cell wall recalcitrance to pretreatment by alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome profiling. RSC Adv 4(33):17282–17292.  https://doi.org/10.1039/c4ra00824c CrossRefGoogle Scholar
  32. 32.
    Constant S, Wienk HLJ, Frissen AE, Pd P, Boelens R, van Es DS et al (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18(9):2651–2665.  https://doi.org/10.1039/c5gc03043a CrossRefGoogle Scholar
  33. 33.
    Stoklosa RJ, Hodge DB (2012) Extraction, recovery, and characterization of hardwood and grass hemicelluloses for integration into biorefining processes. Ind Eng Chem Res 51(34):11045–11053.  https://doi.org/10.1021/ie301260w CrossRefGoogle Scholar
  34. 34.
    Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn Stover enzymatic saccharification. Biotechnol biofuels 6(1):8.  https://doi.org/10.1186/1754-6834-6-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pihlajaniemi V, Sipponen MH, Pastinen O, Lehtomaki I, Laakso S (2015) Yield optimization and rational function modelling of enzymatic hydrolysis of wheat straw pretreated by NaOH-delignification, autohydrolysis and their combination. Green Chem 17(3):1683–1691.  https://doi.org/10.1039/C4GC02218A CrossRefGoogle Scholar
  36. 36.
    Yu Z, Gwak KS, Treasure T, Jameel H, Chang HM, Park S (2014) Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem 7(7):1942–1950.  https://doi.org/10.1002/cssc.201400042 CrossRefPubMedGoogle Scholar
  37. 37.
    Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45(3):820.  https://doi.org/10.2135/cropsci2004.0191 CrossRefGoogle Scholar
  38. 38.
    Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150(2):621–635.  https://doi.org/10.1104/pp.109.137059 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guo F, Shi W, Sun W, Li X, Wang F, Zhao J, Qu Y (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7:38.  https://doi.org/10.1186/1754-6834-7-38 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol 117:352–359.  https://doi.org/10.1016/j.biortech.2012.04.065 CrossRefPubMedGoogle Scholar
  41. 41.
    Skyba O, Douglas CJ, Mansfield SD (2013) Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol 79(8):2560–2571.  https://doi.org/10.1128/AEM.03182-12 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kishimoto T, Chiba W, Saito K, Fukushima K, Uraki Y, Ubukata M (2010) Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. J Agric Food Chem 58(2):895–901.  https://doi.org/10.1021/jf9035172 CrossRefPubMedGoogle Scholar
  43. 43.
    Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068.  https://doi.org/10.1016/j.biortech.2006.10.018 CrossRefPubMedGoogle Scholar
  44. 44.
    Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2(8):25–32.  https://doi.org/10.1166/jbmb.2008.005 CrossRefGoogle Scholar
  45. 45.
    Shimizu S, Yokoyama T, Akiyama T, Matsumoto Y (2012) Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in beta-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin. J Agric Food Chem 60(26):6471–6476.  https://doi.org/10.1021/jf301329v CrossRefPubMedGoogle Scholar
  46. 46.
    Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12.  https://doi.org/10.1016/j.biortech.2012.04.037 CrossRefPubMedGoogle Scholar
  47. 47.
    Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ (2016) Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain Chem Eng 4(9):4563–4572.  https://doi.org/10.1021/acssuschemeng.6b00603 CrossRefGoogle Scholar
  48. 48.
    Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis MF (2009) Can delignification decrease cellulose digestibility in acid pretreated corn Stover? Cellulose 16(4):677–686.  https://doi.org/10.1007/s10570-009-9313-1 CrossRefGoogle Scholar
  49. 49.
    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci U S A 111(33):12013–12018.  https://doi.org/10.1073/pnas.1410657111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control & Treatment of Heavy Metal PollutionChangshaChina
  3. 3.Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical EngineeringHubei University of TechnologyWuhanChina

Personalised recommendations