Brazilian “Flex Mills”: Ethanol from Sugarcane Molasses and Corn Mash

  • Giovanni Uema Alcantara
  • Lucas Conegundes Nogueira
  • Leonardo de Almeida Stringaci
  • Samya Modesto Moya
  • Gustavo Henrique Gravatim CostaEmail author


This manuscript shows an ethanol production from two simultaneously processed raw materials: corn grains and molasses residue from sugarcane production. This process is new in countries such as Brazil, which has industrialized these raw materials in the same plant (Flex Mills), and the effects promoted on ethanol production (fermentation process) have not been studied. This paper shows that the uses of yeast CAT-1 (isolated for ethanol production using sugarcane) are not adequate to fermentation of broth obtained from 100% corn. However, the mixture of 50% corn broth and 50% molasses broth results in increase of cell viability, budding and bud viability of yeast, and the ethanol yield process. Another point to highlight is the high level of phenolic compounds showed by molasses, which could decrease cell viability and yeast budding rate during the recycling of this microorganism. The mixture with corn broth standardizes the phenolic compounds in the molasses broth.


Yeast Fermentation process CAT-1 Bioenergy Biofuel 


Funding Information

Financial support was from Fapesp—Fundação de Amparo à Pesquisa do Estado de São Paulo—through the scholarship granted (2016/23122-2).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    UNICA - Sugar Cane Industry Union (2017) Brazilian light vehicle fleet (Otto cycle). São Paulo: Unica. Accessed 19 Dec 2018
  2. 2.
    Amaral LA, Ascari JP, Duarte WM, Roeder INM, Santos ES, Julio OLL, (2017) Effect of gypsum rates in corn and chemical changes in the soil, Magazine Agrarain, v 10, n 35, pp 31-41. Accessed 15 Dec 2018
  3. 3.
    Gimenez AZ, Franzé RV, Madaleno LL, (2016). Vegetable impurities contents and starch concentration in sugarcane juice. Sci Technol, 8, n 1, pp 42-54. Accessed 20 Dec 2018Google Scholar
  4. 4.
    Eckerta CT, Frigob EP, Albrechtc LP, Albrechtc AJP, Christa D, Santos WG, Berkembrockc E, Egewarthd VA, (2017) Maize ethanol production in Brazil: Characteristics and perspectives, Renewable and Sustainable Energy Reviews. CrossRefGoogle Scholar
  5. 5.
    Mendes FQ, Freita CM, Freita LA, Tralli LF, Teixeira V, Mutton MJR, (2016) Ethanol obtained from molasses broth from clarification using different if flocculants. Ciência & Tecnologia: Fatec-JB, v 8, pp 154-158. Accessed 20 Dec 2018
  6. 6.
    Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25. CrossRefPubMedGoogle Scholar
  7. 7.
    Miller GL (1959) Use of de dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v.31, n.3Google Scholar
  8. 8.
    CTC. Sugarcane Technology Center (2005) Manual of sugar analysis methods. Piracicaba, Sugarcane Technology Center, Analysis Laboratory. Available in CD ROMGoogle Scholar
  9. 9.
    Chavan, SM, Kumar A, Jadhav SJ, (1991). Rapid quantitative analysis of starch in sugarcane juice. International Sugar Journal, Glamorgan, v. 93, n. 107Google Scholar
  10. 10.
    Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. The J Biological Chemistry, Bethesda 73(2):627–650Google Scholar
  11. 11.
    Hartree EF (1972) Determination of protein: A modification of the Lowrey method that gives a linear photometric response. Analytical Biochemistry, v.48, n.2Google Scholar
  12. 12.
    Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer RW, Basso LC, Amorim HV, Oliveira AJ, Davis RW, Ronagli M, Gharizadeh B, Stambuk BU (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1, v 287, pp 485-494. CrossRefGoogle Scholar
  13. 13.
    Venturini Filho WG, Brunelli LT, Toniato J, Nojimoto T, Novaes FV, (2013) Simple method to quantify the aerobic and anaerobic metabolism of alcoholic yeast. Food Processing Center Bulletin, v 31, n 2.
  14. 14.
    Copersucar (2001) Chemical control manual of sugar manufacturing. Piracicaba- SP. CD-ROMGoogle Scholar
  15. 15.
    Fernandes AC (2003) Sugarcane agribusiness calculations. EME/STAB, PiracicabaGoogle Scholar
  16. 16.
    Barbosa JC, Maldonado Junior W (2015) Agronomic Experimentation & AgroEstat - System for Statistical Analysis of Agronomic Testing. Jaboticabal, FUNEPGoogle Scholar
  17. 17.
    Roda Junior GB, Carvalho MR, Annunzio FR, Frigieri MC, Madaleno LL, (2013) Technological Parameters of Ethanol Fermentation in Molasses Mash Using Hop Extract and Oregano Essential Oil. Science & Technology: Fatec-JB, v 5. Accessed 26 Dec 2018Google Scholar
  18. 18.
    Mutton MJR, Costa GHG, Meirelles MB, Oliveira MC, Missima JOD, Teixeira V, Macri RCV, (2013) Technological Characteristics of Three Sweet Sorghum Genotypes Harvested in Two Management Systems. Annals of VII Workshop Agroenergia. Accessed 01 Nov 2019
  19. 19.
    Ribeiro MLD, Ferreira OE, Teixeira V, Mutton MA, Mutton MJR, (2017). Physicochemical treatment of sugarcane juice produces quality cachaça. Agronomic Science Magazine, Ceará, 48, n 3, pp 458-463.
  20. 20.
    Steindl RJ, (2010). Clarification of cane juice for fermentation. Sugar Research & Innovation, Queensland University of Technology, Australia, v 27.
  21. 21.
    Martins NGS, (2004) Phosphates in sugar cane. 99 f. Dissertation (Master of Science) - Luiz de Queiroz College of Agriculture, University of São Paulo Piracicaba. Accessed 01 Nov 2019
  22. 22.
    Martins NGS, (2004) Phosphates in sugar cane. 99 f. Dissertation (Master of Science) - Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba. Accessed 20 Dec 2018
  23. 23.
    Kaur S, Kaler RSS, Aamarpali (2002) Effect of starch on the rheology of molasses. Journal of Food Engineering, Amritsar 55:319–322. CrossRefGoogle Scholar
  24. 24.
    Walker GM (1998) Yeast Physiology and Biotechnology. 1.ed. Wiley, BaltimoreGoogle Scholar
  25. 25.
    Najafpour GD, Shan CP (2003) Enzymatic hydrolysis of molasses. Bioresurce Technology, Nibong Tebal 86:91–94. CrossRefGoogle Scholar
  26. 26.
    Messias RC, Nogueira LC, Costa GHG, (2016) Phenolic compounds affect yeast during the fermentation process. Science and Technology: Fatec-JB, Jaboticabal, v 8Google Scholar
  27. 27.
    Sarris D, Matsakas L, Aggelis G, Koutinas AA, Papanikolaou S (2014) Aerated vs non-aerated conversions of molasses and olive millwastewaters blends into bioethanol by Saccharomyces cerevisiaeunder non-aseptic conditions. Industrial Crops and Products 56:83–93. CrossRefGoogle Scholar
  28. 28.
    Amorim HV (2005) Alcoholic Fermentation: Science & Technology. Fermentec, Piracicaba, p 434Google Scholar
  29. 29.
    Freita LA, Masson IS, Freita CM, Ferreira OE, Mutton MJR, (2012) Evaluation of fermentative microbiota in broth of two saccharin sorghum genotypes. Science & Technology: Fatec-JB, Jaboticabal, v 4.
  30. 30.
    Basso LC, Rocha SN, Basso TO (2011) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. Biofuel Production-Recent Developments and Prospects. Google Scholar
  31. 31.
    Devantier R, Pedersen S, Olsson L, (2005). Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiology Biotechnology, 68, n 5, pp 622-629. Scholar
  32. 32.
    Holupi NT, Roviero JP, Rossato Júnior JAS, Mutton MJR (2014) Ethanol production using molasses from drill-infested cane. Science and Technology: Fatec-JB, Jaboticabal 6:178–182 Accessed 20 Dec 2018Google Scholar
  33. 33.
    Deesuth O, Laopaiboon P, Klanrit P, Laopaiboon L (2015) Improvement of ethanol production from sweet sorghum juice under high gravity and very high gravity conditions: Effects of nutrient supplementation and aeration. Industrial Crops Products 74:95–102. CrossRefGoogle Scholar
  34. 34.
    Costa GHG, Messias RC, Lozano EV, Nogueira LC, Blanco LM, (2018). The Effect of Calcium Concentration on the Physiology of Saccharomyces cerevisiae Yeast in Fermentation. Sugar Tech, 20, n 3, pp 371-374. CrossRefGoogle Scholar
  35. 35.
    Moreira BLD, Parazzi C, Papin LF, Lopes JJC, (2013). Study of Saccharomyces cerevisiae yeast strains from environmental biodiversity in alcoholic fermentation. Bioscience J, v 29, n 5. Accessed 01 Nov 2019
  36. 36.
    Castro E, Nieves UI, Rondón V, Sagues WJ, Fernández-Sandoval MT, Yomano LP, York SW, Erickson J, Vermerris W (2017) Potential for ethanol production from different sorghum cultivars. Industrial Crops Products 109:367–373. CrossRefGoogle Scholar
  37. 37.
    Cinelli BA, Castilho LR, Freire DMG, Castro AM, (2015) A brief review on the emerging technology of etanol production by cold hydrolysis of raw starch. Ind Crop Prod pp 721-729. CrossRefGoogle Scholar
  38. 38.
    Kim Y, Mosier NS, Hendrickson R, Ezeji T, Blaschek H, Dien B, Cotta M, Dale B, Ladisch MR (2008) Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. BioresourTechnol 99:5165–5176. CrossRefGoogle Scholar
  39. 39.
    Prada SM, Guekezian M, Suárez-Iha MEV (1998) Analytical methodology for determining wine sulphate. Quim Nova 21(3):249–252. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Giovanni Uema Alcantara
    • 1
  • Lucas Conegundes Nogueira
    • 1
  • Leonardo de Almeida Stringaci
    • 1
  • Samya Modesto Moya
    • 1
  • Gustavo Henrique Gravatim Costa
    • 1
    • 2
    Email author
  1. 1.Centro de Ciências Exatas e Sociais AplicadasUniversidade do Sagrado CoraçãoBauruBrasil
  2. 2.Universidade Estadual de Minas Gerais-Unidade FrutalFrutalBrasil

Personalised recommendations