Advertisement

Nanoparticle-Mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium Fremyella diplosiphon

  • Behnam Tabatabai
  • Somayeh Gharaie Fathabad
  • Enock Bonyi
  • Sophia Rajini
  • Kadir Aslan
  • Viji SittherEmail author
Article
  • 108 Downloads

Abstract

Insufficient light supply is a major limitation in cultivation of cyanobacteria for scaled-up biofuel production and other biotechnological applications, which has driven interest in nanoparticle-mediated enhancement of cellular light capture. In the present study, Fremyella diplosiphon wild-type (Fd33) and halotolerant (HSF33-2) strains were grown in solution with 20-, 100-, and 200-nm-diameter gold nanoparticles (AuNPs) to determine their impact on biomass accumulation, pigmentation, and fatty acid methyl ester (FAME) production. Results revealed a significant increase in growth of Fd33 (0.244 ± 0.006) and HSF33-2 (0.112 ± 0.003) when treated with 200-nm AuNPs. In addition, we observed a significant increase in chlorophyll a accumulation in 200-nm AuNP-treated Fd33 (25.7%) and HSF33-2 (36.3%) indicating that NPs enhanced photosynthetic pigmentation. We did not observe any alteration in FAME composition and biodiesel properties of transesterified F. diplosiphon lipids among all AuNP treatments. Interactions between F. diplosiphon and AuNPs were visualized using scanning electron microscopy. Energy dispersive X-ray spectroscopy confirmed the presence of AuNPs outside the cells with aggregation in high cell density locales. Our findings indicate that nanotechnological approaches could significantly enhance growth of the organism with no negative effect on FAME-derived biodiesel properties, thus augmenting F. diplosiphon potential as a biofuel agent.

Keywords

Biodiesel Chlorophyll a Energy dispersive X-ray spectroscopy Gold colloids Surface plasmon resonance 

Notes

Acknowledgements

The authors thank Dr. Beronda L. Montgomery at Michigan State University for providing the Fd33 strain used in the study and Dr. Solomon Tadesse at Morgan State University for technical help in transesterification.

Funding information

The study was supported in part by the USDA NIFA [2016-67032-25007] and National Institutes of Health [UL1GM118973] awarded to Morgan State University.

Supplementary material

12155_2019_9966_MOESM1_ESM.docx (69 kb)
ESM 1 (DOCX 68 kb)

References

  1. 1.
    Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. App Microbiol Biotechnol 91:471–490CrossRefGoogle Scholar
  2. 2.
    Martens P (2013) Health and climate change: modelling the impacts of global warming and ozone depletion. Routledge, London, pp 105–123CrossRefGoogle Scholar
  3. 3.
    Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56CrossRefGoogle Scholar
  4. 4.
    Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  5. 5.
    Tabatabai B, Chen H, Lu J, Giwa-Otusajo J, McKenna AM, Shrivastava AK, Sitther V (2018) Fremyella diplosiphon as a biodiesel agent: identification of fatty acid methyl esters via microwave-assisted direct in situ transesterification. Bioenergy Res DOI 11:528–537.  https://doi.org/10.1007/s12155-018-9919-y CrossRefGoogle Scholar
  6. 6.
    Tabatabai B, Arumanayagam AS, Enitan O, Mani A, Natarajan SS, Sitther V (2017) Identification of a halotolerant mutant via in vitro mutagenesis in the cyanobacterium Fremyella diplosiphon. Curr Microbiol 74:77–83CrossRefGoogle Scholar
  7. 7.
    Tabatabai B, Arumanayagam AS, Enitan O, Mani A, Natarajan SS, Sitther V (2017) Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium. Enzym Microb Technol 103:12–17CrossRefGoogle Scholar
  8. 8.
    Torkamani S, Wani SN, Tang YJ, Sureshkumar R (2010) Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl Phys Lett 97:043703CrossRefGoogle Scholar
  9. 9.
    Ooms MD, Sieben VJ, Pierobon SC, Jung EE, Kalontarov M, Erickson D, Sinton D (2012) Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field. Phys Chem Chem Phys 14:4817–4823CrossRefGoogle Scholar
  10. 10.
    Kolwas K, Derkachova A, Shopa M (2009) Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J Quant Spectrosc Radiat Transf 110:1490–1501CrossRefGoogle Scholar
  11. 11.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  12. 12.
    Eroglu E, Eggers PK, Winslade M, Smith SM, Raston CL (2013) Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chem 15:3155–3159CrossRefGoogle Scholar
  13. 13.
    Batschauer A (1998) Photoreceptors of higher plants. Planta 206:479–492CrossRefGoogle Scholar
  14. 14.
    Cobley JG, Zerweck E, Reyes R, Mody A, Seludo-Unson JR, Jaeger H, Weerasuriya S, Navankasattusas S (1990) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon. Plasmid 30:90–105CrossRefGoogle Scholar
  15. 15.
    Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4CrossRefGoogle Scholar
  16. 16.
    Weisstein EW (2019) Least squares fitting--exponential. MathWorld--A Wolfram Web Resource http://mathworldwolframcom/LeastSquaresFittingExponentialhtml. Accessed 28 Jan 2019
  17. 17.
    Widdel F (2007) Theory and measurement of bacterial growth. Di dalam Grundpraktikum Mikrobiol 4:1–11Google Scholar
  18. 18.
    Kahn K, Mazel D, Houmard J, Tandeau de Marsac N, Schaefer M (1997) A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179:998–1006CrossRefGoogle Scholar
  19. 19.
    Tandeau de Marsac N, Houmard J (1988) Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol 167:318–328CrossRefGoogle Scholar
  20. 20.
    Whitaker MJ, Bordowitz JR, Montgomery BL (2009) CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon. Biochem Biophys Res Commun 389:602–606CrossRefGoogle Scholar
  21. 21.
    Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730CrossRefGoogle Scholar
  22. 22.
    Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9:e92460CrossRefGoogle Scholar
  23. 23.
    Talebi AF, Tabatabaei M, Christi Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 1:55–57CrossRefGoogle Scholar
  24. 24.
    Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Yang JW (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876CrossRefGoogle Scholar
  25. 25.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefGoogle Scholar
  26. 26.
    Pattarkine MV, Pattarkine VM (2012) Nanotechnology for algal biofuels. In: The Science of Algal Fuels. Springer, Netherlands, p 147–163Google Scholar
  27. 27.
    Burchardt AD, Carvalho RN, Valente A, Nativo P, Gilliland D, Garcìa CP, Passarella R, Pedroni V, Rossi F, Lettieri T (2012) Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp. Environ Sci Technol 46:11336–11344CrossRefGoogle Scholar
  28. 28.
    Perrault SD, Chan WC (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50− 200 nm. J Am Chem Soc 131:17042–17043CrossRefGoogle Scholar
  29. 29.
    Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protocol Food Anal Chem 1:F4.3.1–F4.3.8.  https://doi.org/10.1002/0471142913.faf0403s01 CrossRefGoogle Scholar
  30. 30.
    Madigan CF, Lu MH, Sturm JC (2000) Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification. Appl Phys Lett 76:1650–1652CrossRefGoogle Scholar
  31. 31.
    Hong S, Song M, Kim S, Bang D, Kang T, Choi I, Lee LP (2016) Integrated microalgae analysis photobioreactor for rapid strain selection. ACS Nano 10:5635–5642CrossRefGoogle Scholar
  32. 32.
    Albanese A, Chan WC (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–5489CrossRefGoogle Scholar
  33. 33.
    Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)− thiosulfate and gold (III)− chloride complexes. Langmuir 22:2780–2787CrossRefGoogle Scholar
  34. 34.
    Masera K, Hossain AK (2017) Production, characterisation and assessment of biomixture fuels for compression ignition engine application. World Acad Sci Engn Technol Int J Mech Aero Indust Mech Manufact Engn 11:1852–1858Google Scholar
  35. 35.
    Schrofel A, Kratosova G, Bohunicka M, Dobrocka E, Vavra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nano Res 13:3207–3216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyMorgan State UniversityBaltimoreUSA
  2. 2.Department of Civil EngineeringMorgan State UniversityBaltimoreUSA
  3. 3.Middle East Educational ServicesDohaQatar

Personalised recommendations