Methane Production Variability According to Miscanthus Genotype and Alkaline Pretreatments at High Solid Content

  • Hélène Laurence Thomas
  • Stéphanie Arnoult
  • Maryse Brancourt-Hulmel
  • Hélène CarrèreEmail author


In the context of increasing needs of lignocellulosic biomass for emerging biorefinery, miscanthus is expected to represent a resource for energy production. Regarding biogas production, its potential may be improved either by genotype selection or pretreatment. Eight different miscanthus genotypes belonging to Miscanthus × giganteus (FLO, GID and H8), M. sacchariflorus (GOL, MAL, AUG, H6) and M. sinensis (H5) species were first compared for biomass composition and potential methane. In a second time, alkali pretreatments (NaOH 10 g 100 gTS−1, CaO 10 g 100 gTS−1) were applied at ambient temperature and high solid content, in different conditions of duration and particle size on the genotype FLO presenting the lowest methane potential. The methane potential varied between miscanthus genotypes with values ranging from 166 ± 10 to 202 ± 7 NmLCH4 gVS−1. All of the studied pretreatments increased the methane production up to 55% and reduced Klason lignin and holocellulose contents up to 37%. From this study, NaOH was more efficient than CaO with an increase of the methane production between 24 and 55% and between 19 and 30%, respectively.


Alkaline pretreatments Miscanthus Genotypes Lignocellulosic biomass Anaerobic digestion High solid content 


Funding Information

The authors acknowledge the French research agency (ANR, Agence Nationale de la Recherche) for its financial support of the project Biomass for the Future (grant ANR-11-BTBR-0006-BFF).

Supplementary material

12155_2018_9957_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)


  1. 1.
    Ghatak HR (2011) Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew Sust Energ Rev 15:4042–4052. CrossRefGoogle Scholar
  2. 2.
    Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgwater AV (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev 76:309–322. CrossRefGoogle Scholar
  3. 3.
    Arnoult S, Brancourt-Hulmel M (2015) A review on Miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res 8:502–526CrossRefGoogle Scholar
  4. 4.
    Cadoux S, Ferchaud F, Demay C, Boizard H, Machet JM, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 6:425–438. CrossRefGoogle Scholar
  5. 5.
    Kiesel A, Wagner M, Lewandowski I (2016) Environmental performance of Miscanthus, switchgrass and maize: can C4 perennials increase the sustainability of biogas production? Sustainability 9:5. CrossRefGoogle Scholar
  6. 6.
    Clifton-Brown J, Harfouche A (2018) Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow, and poplar. Glob Chang Bioenergy.
  7. 7.
    Frydendal-Nielsen S, Hjorth M, Baby S, Felby C, Jørgensen U, Gislum R (2016) The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus. Bioresour Technol 218:1008–1015. CrossRefPubMedGoogle Scholar
  8. 8.
    Heaton E, Dohleman F, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. GCB Bioenergy 1:297–307. CrossRefGoogle Scholar
  9. 9.
    Monlau F, Barakat A, Trably E, Dumas C, Steyer JP, Carrère H (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322. CrossRefGoogle Scholar
  10. 10.
    Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer JP, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225. CrossRefPubMedGoogle Scholar
  11. 11.
    Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23.
  12. 12.
    Arnoult S, Obeuf A, Béthencourt L, Mansard MC, Brancourt-Hulmel M (2015) Miscanthus clones for cellulosic bioethanol production: relationships between biomass production, biomass production components, and biomass chemical composition. Ind Crop Prod 63:316–328. CrossRefGoogle Scholar
  13. 13.
    Costa RMF, Pattathil S, Avci U et al (2016) A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin. New Phytol 213:1710–1725. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thomas HL, Pot D, Latrille E, Trouche G, Bonnal L, Bastianelli D, Carrère H (2017) Sorghum biomethane potential varies with the genotype and the cultivation site. Waste Biomass Valoriz 0:1–6. CrossRefGoogle Scholar
  15. 15.
    Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102CrossRefGoogle Scholar
  16. 16.
    Schroyen M, Vervaeren H, Vandepitte H, van Hulle SWH, Raes K (2015) Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Bioresour Technol 192:696–702. CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou X, Li Q, Zhang Y, Gu Y (2017) Effect of hydrothermal pretreatment on Miscanthus anaerobic digestion. Bioresour Technol 224:721–726. CrossRefPubMedGoogle Scholar
  18. 18.
    Barakat A, Mayer C, Solhy A et al (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4:48109–48127. CrossRefGoogle Scholar
  19. 19.
    Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energy 113:97–105. CrossRefGoogle Scholar
  20. 20.
    Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93. CrossRefGoogle Scholar
  21. 21.
    Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48CrossRefGoogle Scholar
  22. 22.
    Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397CrossRefGoogle Scholar
  23. 23.
    Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar
  24. 24.
    Thomas HL, Seira J, Escudié R, Carrère H (2018) Lime pretreatment of Miscanthus: impact on BMP and batch dry co-digestion with cattle manure. Molecules 23.
  25. 25.
    Nkongndem Nkemka V, Yongqiang L, Hao X (2016) Effect of thermal and alkaline pretreatment of giant miscanthus and Chinese fountaingrass on biogas production. Water Sci Technol:849–856.
  26. 26.
    Soares Rodrigues CI, Jackson JJ, Montross MD (2016) A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind Crop Prod 92:165–173. CrossRefGoogle Scholar
  27. 27.
    André L, Pauss A, Ribeiro T (2017) Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour Technol 247:1027–1037. CrossRefPubMedGoogle Scholar
  28. 28.
    Di Girolamo G, Bertin L, Capecchi L et al (2014) Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues. Biomass Bioenergy 71:318–329. CrossRefGoogle Scholar
  29. 29.
    Barakat A, de Vries H, Rouau X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour Technol 134:362–373. CrossRefPubMedGoogle Scholar
  30. 30.
    Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. CrossRefPubMedGoogle Scholar
  31. 31.
    Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018. CrossRefPubMedGoogle Scholar
  32. 32.
    Zub HW, Monod H, Béthencourt L, Brancourt-Hulmel M (2012) An index of competition reduces statistical variability and improves comparisons between genotypes of Miscanthus. Bioenergy Res 5:829–840. CrossRefGoogle Scholar
  33. 33.
    Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247. CrossRefPubMedGoogle Scholar
  34. 34.
    Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2012) Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chem Eng J 211–212:488–492. CrossRefGoogle Scholar
  35. 35.
    APHA American Public Health Association (1998) Standard methods for the examination of water and wastewaterGoogle Scholar
  36. 36.
    Sluiter A, Hames B, Ruiz R et al (2011) Determination of structural carbohydrates and lignin in biomass. NRELGoogle Scholar
  37. 37.
    Motte JC, Escudié R, Beaufils N, Steyer JP, Bernet N, Delgenès JP, Dumas C (2014) Morphological structures of wheat straw strongly impacts its anaerobic digestion. Ind Crop Prod 52:695–701. CrossRefGoogle Scholar
  38. 38.
    Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819. CrossRefGoogle Scholar
  39. 39.
    Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114CrossRefGoogle Scholar
  40. 40.
    Brosse N, De Lorraine U, Dufour A et al (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6:580–598. CrossRefGoogle Scholar
  41. 41.
    Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456. CrossRefGoogle Scholar
  42. 42.
    Buffiere P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol 53:233–241. CrossRefPubMedGoogle Scholar
  43. 43.
    Jiang D, Ge X, Zhang Q, Zhou X, Chen Z, Keener H, Li Y (2017) Comparison of sodium hydroxide and calcium hydroxide pretreatments of giant reed for enhanced enzymatic digestibility and methane production. Bioresour Technol 244:1150–1157. CrossRefPubMedGoogle Scholar
  44. 44.
    Mancini G, Papirio S, Lens PNL, Esposito G (2016) Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuels 30:1892–1903. CrossRefGoogle Scholar
  45. 45.
    Neves L, Ribeiro R, Oliveira R, Alves MM (2006) Enhancement of methane production from barley waste. Biomass Bioenergy 30:599–603. CrossRefGoogle Scholar
  46. 46.
    Li Y, Zhang R, He Y, Liu X, Chen C, Liu G (2014) Thermophilic solid-state anaerobic digestion of alkaline-pretreated corn stover. Energy Fuel 28:3759–3765. CrossRefGoogle Scholar
  47. 47.
    Katukuri NR, Fu S, He S, Xu X, Yuan X, Yang Z, Guo RB (2017) Enhanced methane production of Miscanthus floridulus by hydrogen peroxide pretreatment. Fuel 199:562–566. CrossRefGoogle Scholar
  48. 48.
    Li M, Wang J, Yang Y, Xie G (2016) Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresour Technol 208:31–41. CrossRefPubMedGoogle Scholar
  49. 49.
    Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013) Effect of particle size on methane production of raw and alkaline pre-treated ensiled sorghum forage. Waste Biomass Valoriz 4:549–556. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LBE, University of Montpellier, INRANarbonneFrance
  2. 2.INRAPeronne CedexFrance
  3. 3.INRAPeronne CedexFrance

Personalised recommendations