Advertisement

BioEnergy Research

, Volume 12, Issue 1, pp 112–122 | Cite as

Bioethanol Production from Dairy Industrial Coproducts

  • Cleidiane Samara MurariEmail author
  • Débora Cristina Moraes Niz da Silva
  • Guilherme Lorencini Schuina
  • Erika Fernanda Mosinahti
  • Vanildo Luiz Del Bianchi
Original Research
  • 201 Downloads

Abstract

This study aimed to produce ethanol by lactose conversion of dairy coproducts (cheese whey, and whey permeate) using the yeast Kluyveromyces marxianus URM 7404, isolated from cheese whey obtained from the production of Gorgonzola cheese. The fermentation occurred at 30 °C for 20 h under aerobic, microaerobic, and anaerobic conditions for both substrates. The results indicated that ethanol production was greater when using the whey permeate under anaerobic conditions (8.90 g L−1, 18 h of fermentation) in comparison to cheese whey (8.08 g L−1, 10 h) at the same conditions. However, regarding the ethanol yield (η), the cheese whey substrate was more effective, given that it achieved 76% of yield (η) and a volumetric productivity (QP) of 0.81 g L−1 h−1 in 10 h under fermentation anaerobic conditions. Biomass production and productivity (QX) were more satisfactory in the whey permeate under aerobic conditions (11.48 g L−1 and 0.75 g L−1 h−1, respectively), in 14 h, with a specific growth rate of 0.253 h−1. It has been obtained 86% of COD reduction at the end of the aerobic process.

Keywords

Biofuel Renewable energy Kluyveromyces Cheese whey Whey permeate Environment 

Notes

Funding Information

The authors are grateful to CAPES—Coordination for the Improvement of Higher Education Personnel for the financial support of this research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Božanić R, Barukčić I, Jakopović KL, Tratnik L (2014) Possibilities of whey utilisation (review article). Austin J Nutr Food Sci 2(7):1036–1042Google Scholar
  2. 2.
    Mollea C, Marmo L, Bosco F. Valorisation of cheese whey, a by-product from the dairy industry. In: Dr. Innocenzo Muzzalupo (Ed.), Food industry. In Tech 4: 549–588. Available from: http://www.intechopen.com/books/food-industry/valorisation-of-cheese-whey-a-byproduct-from-the-dairy-industry, ISBN: 978-953-51-0911-2
  3. 3.
    Blažić M, Pavić K, Zavadlav S, Marčac N (2017) The impact of traditional cheeses and whey on health. Croat J Food Sci Technol 9(2):198–203.  https://doi.org/10.17508/CJFST.2017.9.2.11 CrossRefGoogle Scholar
  4. 4.
    Guimarães PMR, Teixeira JA, Domingues L (2010) Research review paper: fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol 28(3):375–384.  https://doi.org/10.1016/j.biotechadv.2010.02.002 Google Scholar
  5. 5.
    Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445-446(15):385–396.  https://doi.org/10.1016/j.scitotenv.2012.12.038 CrossRefGoogle Scholar
  6. 6.
    Banaszewska A, Cruijssen F, Claassen GDH, Van der Vorst JGAJ (2014) Effect and key factors of byproducts valorization: the case of dairy industry. J Dairy Sci 97(4):1893–1908.  https://doi.org/10.3168/jds.2013-7283 CrossRefGoogle Scholar
  7. 7.
    Baldasso C, Barros TC, Tessaro IC (2011) Concentration and purification of whey proteins by ultrafiltration. Desalination 278(1–3):381–386.  https://doi.org/10.1016/j.desal.2011.05.055 CrossRefGoogle Scholar
  8. 8.
    Prazeres AR, Carvalho R, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68.  https://doi.org/10.1016/j.jenvman.2012.05.018 CrossRefGoogle Scholar
  9. 9.
    Metsämuuronen S, Mänttäri M, Nystróm M (2011) Comparison of analysis methods for protein concentration and its use in UF fractionation of whey. Desalination 283:156–164.  https://doi.org/10.1016/j.desal.2011.02.012 CrossRefGoogle Scholar
  10. 10.
    Diniz RHS, Rodrigues MQRB, Fietto LG, Passos FML, Silveira WB (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 3(2):111–117.  https://doi.org/10.1016/j.bcab.2013.09.002 CrossRefGoogle Scholar
  11. 11.
    OECD-FAO (Organization for Economic Co-operation and Development, Food and Agriculture Organization of the United Nations). 2014. OECD-FAO Agricultural Outlook 2014–2023: Dairy. Accessed Jul. 17, 2018. http://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2014_agr_outlook-2014-en
  12. 12.
    Lane MM, Morrisey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26.  https://doi.org/10.1016/j.fbr.2010.01.001 CrossRefGoogle Scholar
  13. 13.
    Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354.  https://doi.org/10.1007/s00253-008-1458-6 CrossRefGoogle Scholar
  14. 14.
    Kargi F, Ozmihci S (2006) Utilization of cheese whey powder (CWP) for ethanol fermentations: effects of operating parameters. Enzym Microb Technol 38:711–718.  https://doi.org/10.1016/j.enzmictec.2005.11.006 CrossRefGoogle Scholar
  15. 15.
    Guo X, Zhou J, Xiao D (2010) Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl Biochem Biotechnol 160:532–538.  https://doi.org/10.1007/s12010-008-8412-z CrossRefGoogle Scholar
  16. 16.
    Rosenberg M, Tomaska M, Kanuch J, Sturdik E (1995) Improved ethanol production from whey with Saccharomyces cerevisiae using permeabilized cells of Kluyveromyces marxianus. Acta Biotechnol 15:387–390.  https://doi.org/10.1002/abio.370150413 CrossRefGoogle Scholar
  17. 17.
    Arora R, Behera S, Sharma NK, Kumar S (2017) Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates. Renew Energy 109:406–421.  https://doi.org/10.1016/j.renene.2017.03.059 CrossRefGoogle Scholar
  18. 18.
    Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol 31(5):451–459.  https://doi.org/10.1016/j.nbt.2014.06.002 CrossRefGoogle Scholar
  19. 19.
    Zoppellari F, Bardi L (2013) Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. New Biotechnol 30(6):607–613.  https://doi.org/10.1016/j.nbt.2012.11.017 CrossRefGoogle Scholar
  20. 20.
    Oke MA, Annuar MSM, Simarani K (2016) Mixed feedstock approach to lignocellulosic ethanol production - prospects and limitations. Bioenerg Res 9:1189–1203. http://dx.doi.org/.  https://doi.org/10.1007/s12155-016-9765-8 CrossRefGoogle Scholar
  21. 21.
    Xin F, Zhang H, Wong W (2013) Bioethanol production from horticultural waste using crude fungal enzyme mixtures produced by solid state fermentation. Bioenergy Res 6:1030–1037.  https://doi.org/10.1007/s12155-013-9330-7 CrossRefGoogle Scholar
  22. 22.
    Comelli RN, Seluy LG, Isla MA (2016) Optimization of a low-cost defined medium for alcoholic fermentation – a case study for potential application in bioethanol production from industrial wastewaters. New Biotechnol 33:107–115.  https://doi.org/10.1016/j.nbt.2015.09.001 CrossRefGoogle Scholar
  23. 23.
    Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Technol 36(7):930–936.  https://doi.org/10.1016/j.enzmictec.2005.01.018 CrossRefGoogle Scholar
  24. 24.
    Miller GH (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429.  https://doi.org/10.1021/ac60147a030 CrossRefGoogle Scholar
  25. 25.
    Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48(2):422–427.  https://doi.org/10.1016/0003-2697(72)90094-2 CrossRefGoogle Scholar
  26. 26.
    APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  27. 27.
    Santos VAQ, Cruz CHG (2017) Zymomonas mobilis immobilized on loofa sponge and sugarcane bagasse for Levan and ethanol production using repeated batch fermentation. Brazilian J Chem Eng 34:407–418.  https://doi.org/10.1590/0104-6632.20170342s20150350 CrossRefGoogle Scholar
  28. 28.
    AOAC (1992) Official methods of analysis, 13th edn. AOAC International, Washington DCGoogle Scholar
  29. 29.
    Yousef ET (2015) Utilization of whey as one dairy industrial waste in the production of alcohol. Int J Curr Microbiol Appl Sci 4(7):224–228Google Scholar
  30. 30.
    Hagman A, Säll T, Piškur J (2014) Analysis of the yeast short-term Crabtree effect and its origin. FEBS J 281(21):4805–4814.  https://doi.org/10.1111/febs.13019 CrossRefGoogle Scholar
  31. 31.
    Castro-Rosas J, Guerrero-Rodríguez WJ, Rodríguez-Miranda J, Páez-Lerma JB, Gómez-Aldapa CA (2013) Optimization of thermal protein precipitation from acid whey. J Food Process Pres 37:924–929.  https://doi.org/10.1111/j.1745-4549.2012.00728.x CrossRefGoogle Scholar
  32. 32.
    Tesnière C, Delobel P, Pradal M, Blondin B (2013) Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must. PLoS One 8(4):e61645.  https://doi.org/10.1371/journal.pone.0061645 CrossRefGoogle Scholar
  33. 33.
    Parrondo J, García LA, Díaz M (2009) Nutrient balance and metabolic analysis in a Kluyveromyces marxianus fermentation with lactose-added whey. Braz J Chem Eng 26(3):445–456.  https://doi.org/10.1590/S0104-66322009000300001 CrossRefGoogle Scholar
  34. 34.
    Sansonetti S, Curcio S, Calabrò V, Iorio G (2010) Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology. Bioresour Technol 101(23):9156–9162  https://doi.org/10.1016/j.biortech.2010.07.030 CrossRefGoogle Scholar
  35. 35.
    Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331.  https://doi.org/10.1016/S1567-1356(03)00112-0 CrossRefGoogle Scholar
  36. 36.
    Dorta C, Neto OP, Abreu NMS, Nicolau Junior N, Nagashima AI (2006) Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol 22:177–182.  https://doi.org/10.1007/s11274-005-9016-1 CrossRefGoogle Scholar
  37. 37.
    Lemes AC, Álvares GT, Kalil SJ (2013) Extraction of β-galactosidase from Kluyveromyces marxianus CCT 7082 by ultrasonic method. Biochem Biotechnol Rep 1(2):7–13.  https://doi.org/10.5433/2316-5200.2012v1n2p7 CrossRefGoogle Scholar
  38. 38.
    Schultz N, Chang LF, Hauck A, Reuss M, Syldatk C (2006) Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol 69:515–520.  https://doi.org/10.1007/s00253-005-0012-z CrossRefGoogle Scholar
  39. 39.
    Yadav JSS, Bezawada J, Ajila CM, Yan S, Tyagi RD, Surampalli RY (2014) Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour Technol 164:119–127.  https://doi.org/10.1016/j.biortech.2014.04.069 CrossRefGoogle Scholar
  40. 40.
    Koushki M, Jafari M, Azizi M (2012) Comparison of ethanol production from cheese whey permeate by two yeast strains. J Food Sci Technol 49(5):614–619.  https://doi.org/10.1007/s13197-011-0309-0 CrossRefGoogle Scholar
  41. 41.
    Anvari M, Khayati G (2011) Submerged yeast fermentation of cheese whey for protein production and nutritional profile analysis. Adv J Food Sci Technol 3:122–126Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Engineering and TechnologyUNESP—São Paulo State UniversitySão José do Rio PretoBrazil

Personalised recommendations