Advertisement

BioEnergy Research

, Volume 12, Issue 1, pp 205–216 | Cite as

Sustainable Diesel Feedstock: a Comparison of Oleaginous Bacterial and Microalgal Model Systems

  • S. Archanaa
  • Steffi Jose
  • Amitava Mukherjee
  • G. K. SuraishkumarEmail author
Original Research

Abstract

The key to sustainable and commercially viable biodiesel production relies primarily on species selection. Oleaginous species with high biomass productivity, lipid content, and lipid productivity are desirable. High growth rate of the species results in high biomass productivity, which leads to high lipid productivity. It is known that algal oil technology lacks commercial feasibility predominantly due to low biomass productivity and other factors. The use of a faster-growing organism, such as oleaginous bacteria, could offset this major disadvantage. Thus, the current study analyzes two model oleaginous systems: Rhodococcus opacus PD630 (a bacterium) and Chlorella vulgaris NIOT5 (a microalga) for their growth rate and lipid productivity. It was found that the bacterial growth rate was 25-fold the microalgal growth rate. The bacterium also showed 57-fold higher biomass productivity and 75-fold higher biodiesel productivity. Further, the analysis of a large number of literature data from relevant studies under different cultivation conditions showed that R. opacus PD630 has productivities far higher than various autotrophic microalgae. Similarly, a frequency distribution of data collected from the literature showed that Rhodococcus sp. has productivities in the higher range as compared to heterotrophic microalgae. Thus, bacteria could serve as a better alternative to microalgae toward developing a commercially viable biofuel technology. Further, the biodiesel characterization study showed that the quality of diesel from the bacterium was better than that from the microalga.

Keywords

Lipid productivity R. opacus Biodiesel Sustainability Growth rate Biomass productivity 

Notes

Funding

The authors thank the Department of Science and Technology (DST, grant no. SB/S3/CE/007/2013) and the Department of Biotechnology (DBT, grant ref. no. BT/PR11328/PBD/26/176/2008), Government of India, for financial assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12155_2018_9948_MOESM1_ESM.docx (82 kb)
Online Resource 1 (DOCX 82 kb)
12155_2018_9948_MOESM2_ESM.xlsx (24 kb)
Online Resource 2 (XLSX 23 kb)

References

  1. 1.
    Dunahay TG, Jarvls EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57:223–231CrossRefGoogle Scholar
  2. 2.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  3. 3.
    Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, Bugbee B, Wood BD, Seefeldt LC (2013) Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy Fuel 27:220–228CrossRefGoogle Scholar
  4. 4.
    Rupprecht J (2009) From systems biology to fuel—Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142:10–20CrossRefGoogle Scholar
  5. 5.
    Hu Q, Sommerfeld M, Jarvis E, Girardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  6. 6.
    Brune D, Lundquist T, Benemann J (2010) Microalgal biomass for greenhouse gas reductions. J Environ Eng 135:1136–1144CrossRefGoogle Scholar
  7. 7.
    Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  8. 8.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  9. 9.
    Höffner K, Barton PI (2014) Design of microbial consortia for industrial biotechnology. Comput Aided Chem Eng 34:65–74CrossRefGoogle Scholar
  10. 10.
    Borowitzka MA (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4:267–279CrossRefGoogle Scholar
  11. 11.
    Felizardo P, Neiva MJ, Raposo I, Mendes JF, Berkemeier R, Bordado JM (2006) Production of biodiesel from waste frying oils. Waste Manag 26:487–494CrossRefGoogle Scholar
  12. 12.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  13. 13.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846CrossRefGoogle Scholar
  14. 14.
    FAO United Nations. Sustainable bioenergy: a framework for decision makers. http://www.fao.org/tempref/docrep/fao/010/a1094e/a1094e00.pdf. Accessed 20 Nov 2017
  15. 15.
    FAO United Nations. The state of food and agriculture. http://www.fao.org/tempref/docrep/fao/011/i0100e/i0100e.pdf. Accessed 20 Nov 2017
  16. 16.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefGoogle Scholar
  17. 17.
    Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730CrossRefGoogle Scholar
  18. 18.
    Williams PJB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci Environ Sci 3:554–590CrossRefGoogle Scholar
  19. 19.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43CrossRefGoogle Scholar
  20. 20.
    Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214CrossRefGoogle Scholar
  21. 21.
    Caspeta L, Nielsen J (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31:789–793CrossRefGoogle Scholar
  22. 22.
    Li W, Du W, Li YH, Liu DH, Zhao ZB (2007) Enzymatic transesterification of yeast oil for biodiesel fuel production. Chinese J Process Eng 7:137–140Google Scholar
  23. 23.
    Liu S, Yang W, Shi A (2000) Screening of the high lipid production strains and studies on its flask culture conditions. Microbiology 27:93–97Google Scholar
  24. 24.
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea J (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387CrossRefGoogle Scholar
  25. 25.
    Thevenieau F, Nicaud J (2013) Microorganisms as sources of oils. OCL 20:1–8CrossRefGoogle Scholar
  26. 26.
    Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88:621–636CrossRefGoogle Scholar
  27. 27.
    Unno K, Hagima N, Kishido T, Okada S, Oku N (2005) Deuterium-resistant algal cell line for D labeling of heterotrophs expresses enhanced level of Hsp60 in D2O medium. Appl Environ Microbiol 71:2256–2259CrossRefGoogle Scholar
  28. 28.
    Renneberg R, Berkling V, Loroch V (2016) Biotechnology for beginners, 2nd edn. Elsevier Academic Press, AmsterdamGoogle Scholar
  29. 29.
    Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Bioresource technology selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235CrossRefGoogle Scholar
  30. 30.
    Albers E, Johansson E, Franzén CJ, Larsson C (2011) Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol Biofuels 4(59):59CrossRefGoogle Scholar
  31. 31.
    Cabrini K, Gallo C (1999) Yeast identification in alcoholic fermentation process in a sugar cane industry unit of São Paulo state. Brazil Sci Agric 56:207–216CrossRefGoogle Scholar
  32. 32.
    Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163CrossRefGoogle Scholar
  33. 33.
    Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275CrossRefGoogle Scholar
  34. 34.
    Amorim H, Basso L, Lopes M (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew W, Kelsall D, Austin G, Kluhspies C (eds) The alcohol textbook: a reference for the beverage, fuel, and industrial alcohol industries. Nottingham University Press, Nottingham, pp 39–46Google Scholar
  35. 35.
    Alvarez H (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefGoogle Scholar
  36. 36.
    Steinbuchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213CrossRefGoogle Scholar
  37. 37.
    Gouda M, Omar S, Aouad L (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711CrossRefGoogle Scholar
  38. 38.
    Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386CrossRefGoogle Scholar
  39. 39.
    Alvarez HM, Roxana AS, Herrero OM, Hernandez MA, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:69–78Google Scholar
  40. 40.
    Zhang H, Wu C, Wu Q, Dai J, Song Y (2016) Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-labeled glucose and gas chromatography-mass spectrometry. PLoS One 11:e0159187CrossRefGoogle Scholar
  41. 41.
    Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49CrossRefGoogle Scholar
  42. 42.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756CrossRefGoogle Scholar
  43. 43.
    Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221CrossRefGoogle Scholar
  44. 44.
    Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X, Zhang SYD, Song L, Zhang H et al (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42:1052–1064CrossRefGoogle Scholar
  45. 45.
    Harrison P, Berges J (2005) Marine culture media. In: Anderson R (ed) Algal culturing techniques. Academic, New York, pp 21–23Google Scholar
  46. 46.
    Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47CrossRefGoogle Scholar
  47. 47.
    Jose S, Suraishkumar GK (2016) High carbon (CO2) supply leads to elevated intracellular acetyl CoA levels and increased lipid accumulation in Chlorella vulgaris. Algal Res 19:307–315CrossRefGoogle Scholar
  48. 48.
    Balan R, Suraishkumar GK (2014) Simultaneous increases in specific growth rate and specific lipid content of Chlorella vulgaris through UV-induced reactive species. Biotechnol Prog 30:291–299CrossRefGoogle Scholar
  49. 49.
    ASTM: 6751-02 (2003) American standards for testing of materials. http://www.svlele.com/biodiesel_std.htm. Accessed 22 Jul 2018
  50. 50.
    EN: 14214 (2003) European standards for biodiesel. http://www.svlele.com/biodiesel_std.htm. Accessed 22 Jul 2018
  51. 51.
    IS: 15607 (2005), Indian standards for biodiesel. https://ia600407.us.archive.org/0/items/gov.in.is.15607.2005/is.15607.2005.pdf. Accessed 22 Jul 2018
  52. 52.
    Mallick N, Mandal S, Singh AK, Bishai M, Dash A (2012) Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol 87:137–145CrossRefGoogle Scholar
  53. 53.
    Thomson N, Sivaniah E (2010) Synthesis, properties and uses of bacterial storage lipid granules as naturally occurring nanoparticles. Soft Matter 6:4045–4057CrossRefGoogle Scholar
  54. 54.
    Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600CrossRefGoogle Scholar
  55. 55.
    Huang Q, Jiang F, Wang L, Yang C (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329CrossRefGoogle Scholar
  56. 56.
    Al Taweel AM, Shah Q, Aufderheide B (2012) Effect of mixing on microorganism growth in loop bioreactors. Int J Chem Eng 984827(12)Google Scholar
  57. 57.
    Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38CrossRefGoogle Scholar
  58. 58.
    Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784CrossRefGoogle Scholar
  59. 59.
    Metting F (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489Google Scholar
  60. 60.
    Acien F, Fernández J, Molina-Grima E (2013) Economics of microalgae biomass production. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 313–325Google Scholar
  61. 61.
    Liu Z, Wang G (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722CrossRefGoogle Scholar
  62. 62.
    Liu A, Chen W, Zheng L, Song L (2011) Identification of high-lipid producers for biodiesel production from forty-three green algal isolates in China. Prog Nat Sci Mater Int 21:269–276CrossRefGoogle Scholar
  63. 63.
    Mairet F, Bernard O, Masci P, Lacour T, Sciandra A (2011) Bioresource technology modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresour Technol 102:142–149CrossRefGoogle Scholar
  64. 64.
    Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467CrossRefGoogle Scholar
  65. 65.
    Yao Y, Lu Y, Peng K, Huang T, Niu YF, Xie WH, Yang WD, Liu JS, Li HY (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7:110CrossRefGoogle Scholar
  66. 66.
    Tan KWM, Lee YK (2016) The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol Biofuels 1–14Google Scholar
  67. 67.
    Beal CM, Gerber LN, Sills DL, Huntley ME, Machesky SC, Walsh MJ, Tester JW, Archibald I, Granados J, Greene CH (2015) Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res 10:266–279CrossRefGoogle Scholar
  68. 68.
    Davis R, Markham J, Kinchin CM, Grundl N, Tan ECD, Humbird D (2016) Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion. http://www.nrel.gov/docs/fy16osti/64772.pdf. Accessed 2 Sep 2018
  69. 69.
    Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinergis DMM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043CrossRefGoogle Scholar
  70. 70.
    Knothe G, Matheaus AC, Ryan TW (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester q. Fuel 82:971–975CrossRefGoogle Scholar
  71. 71.
    Gopinath A, Puhan S, Nagarajan G (2009) Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renew Energy 34:1806–1811CrossRefGoogle Scholar
  72. 72.
    Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111CrossRefGoogle Scholar
  73. 73.
    Musharraf SG, Ahmed MA, Zehra N, Kabir N, Choudhary MI, Rahman AU (2012) Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS / MS analysis. Chem Cent J 6:149Google Scholar
  74. 74.
    Chiu C, Schumacher LG, Suppes GJ (2004) Impact of cold flow improvers on soybean biodiesel blend. Biomass Bioenergy 27:485–491CrossRefGoogle Scholar
  75. 75.
    Knothe G (2010) Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 24:2098–2103CrossRefGoogle Scholar
  76. 76.
    Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364CrossRefGoogle Scholar
  77. 77.
    Bamgboye A, Hansen A (2008) Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int Agrophys 22:21–29Google Scholar
  78. 78.
    Lloyd AC, Cackette TA (2015) Diesel engines: environmental impact and control. J Air Waste Manage Assoc 37–41Google Scholar
  79. 79.
    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  80. 80.
    Phillips W (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298Google Scholar
  81. 81.
    Kumar S, Gupta N, Pakshirajan K (2015) Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng 3:1630–1636CrossRefGoogle Scholar
  82. 82.
    Molina Grima E, Belarbi E, Acien Fernandez G, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  83. 83.
    Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290CrossRefGoogle Scholar
  84. 84.
    Na K, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382CrossRefGoogle Scholar
  85. 85.
    Shah M (2014) Efficacy of Rhodococcus rhodochrous in microbial degradation of toludine dye. J Pet Environ Biotechnol 5(4):187CrossRefGoogle Scholar
  86. 86.
    Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefGoogle Scholar
  87. 87.
    Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93:891–900CrossRefGoogle Scholar
  88. 88.
    Wei Z, Zeng G, Kosa M, Huang DL, Ragauskas A (2014) Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Appl Biochem Biotechnol 175:1234–1246CrossRefGoogle Scholar
  89. 89.
    Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenergy Res 3:204–213CrossRefGoogle Scholar
  90. 90.
    Perez-Garcia O, Bashan Y (2015) Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In: Prokop A, Bajpai R, Zappi M (eds) Algal biorefineries. Springer, Cham, pp 61–131CrossRefGoogle Scholar
  91. 91.
    Perez-garcia O, Escalante FME, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRefGoogle Scholar
  92. 92.
    Holder JW, Ulrich JC, Debono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leah ALB, Ghiviriga I, Daniel C et al (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences BuildingIndian Institute of Technology MadrasChennaiIndia
  2. 2.Centre for NanobiotechnologyVIT UniversityVelloreIndia

Personalised recommendations