Advertisement

BioEnergy Research

, Volume 12, Issue 1, pp 34–42 | Cite as

Development of Near-Infrared Reflectance Spectroscopy (NIRS) Calibrations for Traits Related to Ethanol Conversion from Genetically Variable Napier Grass (Pennisetum purpureum Schum.)

  • William F. AndersonEmail author
  • Bruce S. Dien
  • Steven D. Masterson
  • Robert B. Mitchell
Article
  • 139 Downloads

Abstract

Napier grass (Pennisetum purpureum Schum.) is one of the highest-yielding feedstocks for bio-based products and biofuel in semi-tropical areas of the USA and the world. Thirty genetically diverse Napier grass accessions were selected from a germplasm nursery in Tifton, GA and analyzed for fiber, ash, nitrogen (N) concentration, and biochemical conversion to ethanol. A near-infrared reflectance spectroscopy (NIRS) calibration was developed from this material to predict ethanol production, xylans, N concentration, and ash by separating leaves and stems and correlating with wet chemistry analyses. The high diversity of material from dwarf material with high leaf and stem digestibility to taller and more productive Napier grass cultivars resulted in high correlations with predicted results for in vitro dry matter digestibility (2 = 0.93), neutral detergent fiber (r2 = 0.83), acid detergent fiber (r2 = 0.95), ethanol (r2 = 0.90), nitrogen (r2 = 0.99), and ash (r2 = 0.98). This information will allow faster evaluation of Napier grass biomass for use by industry or geneticists.

Keywords

Forage Biofuels Biomass Near-infrared reflectance spectroscopy (NIRS) 

References

  1. 1.
    Abrams SM, Shenk JS, Westerhaus MO, Barton FE (1987) Determination of forage quality by near infrared reflectance spectroscopy: efficiency of broad based calibration equations. J Dairy Sci 70:806–813CrossRefGoogle Scholar
  2. 2.
    Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366CrossRefGoogle Scholar
  3. 3.
    Anderson WF, Peterson JD, Akin DE, Morrison WH III (2005) Enzyme pretreatment of grass lignocellulose for potential high-value co-products and an improved fermentable substrate. Appl Biochem Biotechnol 121-124:303–310CrossRefGoogle Scholar
  4. 4.
    Anderson WF, Dien BS, Brandon SK, Peterson JD (2008) Assessment of Bermudagrass and bunch grasses as feedstocks for conversion to ethanol. Appl Biochem Biotechnol 145:13–21CrossRefGoogle Scholar
  5. 5.
    Anderson WF, Dien BS, Jung HG, Vogel K, Weimer PJ (2010) Effects of forage quality and cell wall constituents of Bermudagrass on biochemical conversion to ethanol. Bioenerg Res 3:225–237CrossRefGoogle Scholar
  6. 6.
    Bhandari AP, Sukanya DH, Ramesh CR (2006) Application of isozyme data in fingerprinting Napiergrass (Pennisetum purpureum Schum.) for germplasm management. Genet Resour Crop Evol 53:253–264CrossRefGoogle Scholar
  7. 7.
    Bouton J (2002) Bioenergy crop breeding and production research in the southeast: final report for 1996 to 2001; in: bioenergy crop breeding and production research in the southeast, ORNL/SUB-02-19XSV810C/01Google Scholar
  8. 8.
    Brandon SK, Sharma LN, Hawkins GM, Anderson WF, Chambliss CK, Peterson JD (2011) Ethanol and co-product generation from pressurized batch hot water pretreated T85 Bermudagrass and Merkeron napiergrass using recombinant Escherichia coli as biocatalyst. Biomass Bioenergy 35:3667–3673CrossRefGoogle Scholar
  9. 9.
    Burton GW (1989) Registration of “Merkeron” napiergrass. Crop Sci 29:1327CrossRefGoogle Scholar
  10. 10.
    Casler MD, Jung HJG (2006) Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses. Ani Feed Sci Technol 125:151–161CrossRefGoogle Scholar
  11. 11.
    de Queiroz Filho JL, da Silva DS, do Nascimento IS (2000) Dry matter production and quality of elephantgrass (Pennisetum purpureum Schum.) cultivar Roxo at different cutting ages. R Bras Zootec 29:69–74CrossRefGoogle Scholar
  12. 12.
    Hanna WW, Monson W (1988) Registration of dwarf Tift N75 napiergrass germplasm. Crop Sci 28:870CrossRefGoogle Scholar
  13. 13.
    Hanna WW, Chaparro CJ, Mathews BW, Burns JC, Sollenberger LE, Carpenter JR (2004) Perennial Pennisetums. In: Moser LE, Burson BL, and Sollenberger LE (ed.) Warm-season (C4) grasses. Agronomy 45: 503–520Google Scholar
  14. 14.
    Harris K, Anderson WF, Malik R (2010) Genetic relationships among napiergrass (Pennisetum purpureum Schum.) nursery accessions using AFLP markers. Plant Genet Resour: Charact Utilization 8:63–70CrossRefGoogle Scholar
  15. 15.
    Hou S, Li L (2011) Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy. J Integr Plant Biol 53:166–175CrossRefGoogle Scholar
  16. 16.
    Huang J, Xia T, Li A, Yu B, Li Q, Tu Y, Zhang W, Yi Z, Peng L (2012) A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresour Technol 121:274–281CrossRefGoogle Scholar
  17. 17.
    Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Animal Sci 73:2774–2790CrossRefGoogle Scholar
  18. 18.
    Kandel R, Singh HP, Singh BP, Harris-Shultz KR, Anderson WF (2015) Assessment of genetic diversity in napiergrass (Pennisetum purpureum Schum.) using microsatellite markers, single-nucleotide polymorphorism, and insertion-deletion markers from pearl millet (Pennisetum glaucum [L.] R. Br.). Plant Mol Bio Rep 33:265–272.  https://doi.org/10.1007/s11105-015-0918-2 Google Scholar
  19. 19.
    Knoll J, Anderson W, Strickland T, Hubbard R, Malik R (2012) Low-input production of biomass from perennial grasses in the coastal plain of Georgia, USA. BioEnergy Res 5(1):206–214.  https://doi.org/10.1007/s12155-011-9122-x CrossRefGoogle Scholar
  20. 20.
    Lorenzana RE, Lewis MF, Jung H-JG, Bernardo R (2010) Quantitative trait loci and trait correlations for maize Stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50:541–555CrossRefGoogle Scholar
  21. 21.
    Lowe AJ, Thorpe W, Teake A, Hanson J (2003) Characterization of germplasm accession of napiergrass (Pennisetum purpureum and P. purpureum x P. glaucum hybrids) and comparison with farm clones using RAPD. Genet Resour Crop Evol 50:121–132CrossRefGoogle Scholar
  22. 22.
    Marten GC, Barnes RF (1980) Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems. In: Pigden WJ, Blach CC, Graham M (eds) Proc. Int. standardization of analytical methodology for feeds, Ottawa, Canada. 12–14 Mar. 1979. Ind. Development Ctr. 134e. Ottawa, Canada, pp 67–71Google Scholar
  23. 23.
    Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Filho AZ, Ramos LP, Dillon AJP, Camassola M (2015) Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Bioresour Technol 192:228–237CrossRefGoogle Scholar
  24. 24.
    Shenk JS, Westerhaus MO (1991) Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy. Crop Sci 31:469–474CrossRefGoogle Scholar
  25. 25.
    Sotomayor-Rios A, Torres-Cardona S, Quiles-Belen A, Hanna W (1997) Agronomic comparison of dwarf and tall Napiergrass in Puerto Rico. J Agric Univ Puerto Rico 81:9–18Google Scholar
  26. 26.
    Teymouri F, Lauerano-Perez L, Alizadeh H, Dale BE (2005) Optimization of ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn Stover. Bioresour Technol 96:2014–2018CrossRefGoogle Scholar
  27. 27.
    Tilley JM, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Brit Grassl Soc 18:104–111CrossRefGoogle Scholar
  28. 28.
    Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597CrossRefGoogle Scholar
  29. 29.
    Vogel KP, Pederson JF, Masterson SD, Toy JJ (1999) Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci 39:276–279CrossRefGoogle Scholar
  30. 30.
    Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2010) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. BioEnergy Res 4:96–110CrossRefGoogle Scholar
  31. 31.
    Vogel KP, Mitchell RB, Sarath G, Jung HG, Dien BS, Casler MD (2013) Switchgrass biomass composition altered by six generations of divergent breeding for digestibility. Crop Sci 53:853–862CrossRefGoogle Scholar
  32. 32.
    Wanjala BW, Obonyo M, Wachira FN, Muchugi A, Mulaa M, Harvey J, Hanson J (2013) Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation. AoB Plants 5:plt022.  https://doi.org/10.1093/aobpla/plt022 CrossRefGoogle Scholar
  33. 33.
    Westerhaus M, Workman J, Reeves JB III, Mark H. (2004) Quantitative analysis. In: Roberts CA, Workman J. Jr, Reeves JB (eds) Near-infrared spectroscopy in agriculture. Agron. Monog. 44. ASA, CSSA, and SSSA, Madison, WI, p 133–174Google Scholar
  34. 34.
    Woodard KR, Prine GM (1993) Dry-matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci 33:818–824CrossRefGoogle Scholar
  35. 35.
    Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohyd Polym 79:914–920CrossRefGoogle Scholar
  36. 36.
    Yasuda M, Ishii Y, Ohta K (2015) Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: pretreatment, saccharification, and fermentation. Biotechnol Bioprocess Eng 19:943–950CrossRefGoogle Scholar
  37. 37.
    Yasuda M, Takeo K, Nagai H, Uto T, Yui T, Matsumoto T, Ishii Y, Ohta K (2013) Enhancement of ethanol production from napiergrass (Pennisetum purpureum Schmach) by a low-moisture anhydrous ammonia pretreatment. J Sustain Bioenergy Sys 3:179–185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Crop Genetics and Breeding Research UnitTiftonUSA
  2. 2.National Center for Agricultural Utilization ResearchPeoriaUSA
  3. 3.Wheat, Sorghum and Forage Research, 251 Filley Hall/Food Ind. UNL, East CampusUniversity of NebraskaLincolnUSA

Personalised recommendations