Advertisement

BioEnergy Research

, Volume 11, Issue 3, pp 551–561 | Cite as

Recalcitrance Assessment of the Agro-industrial Residues from Five Agave Species: Ionic Liquid Pretreatment, Saccharification and Structural Characterization

  • José A. Pérez-Pimienta
  • Reyna M. Mojica-Álvarez
  • Leticia M. Sánchez-Herrera
  • Ashutosh Mittal
  • Robert W. Sykes
Article
  • 195 Downloads

Abstract

Agave has recently shown its potential as a bioenergy feedstock with promising features such as higher biomass productivity than leading bioenergy feedstock while at the same time being drought-resistant with low water requirements and high sugar to ethanol conversion using ionic liquid (IL) pretreatment. IL pretreatment was studied to develop the first direct side-by-side comparative recalcitrance assessment of the agro-industrial residues from five Agave species [Agave americana (AME), A. angustifolia (ANG), A. fourcroydes (FOU), A. salmiana (SAL), and A. tequilana (TEQ)] using compositional analysis, X-ray diffraction, and the lignin syringyl/guaiacyl subunit ratio (S/G) by pyrolysis molecular beam mass spectrometry (PyMBMS). Prominent calcium oxalate peaks were found only in unpretreated AME, SAL, and TEQ. The S/G ratios of all five unpretreated Agave species were between 1.27 and 1.57 while the IL-pretreated samples were from 1.39 to 1.72. The highest overall sugar production was obtained with IL-pretreated FOU with 492 mg glucose/g biomass and 157 mg xylose/g biomass at 120 °C and 3 h using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]). An estimated theoretical ethanol yield from the studied agro-industrial residues from the five Agave species was in the range of 1060 to 5800 L ethanol/ha/year. These comparison results demonstrate the potential of the Agave spp. as a suitable biofuel feedstock which can be employed within a biorefinery scheme.

Keywords

Agave Biofuels Characterization Crystallinity S/G Saccharification 

Notes

Acknowledgements

The enzymes used were obtained as a gift from Novozymes. We thank Bioagaves de la Costa, Desfibradora de Jalpa, Destilería Leyros, Mezcal Koch, and Hacienda Aké for providing the materials used in the study. This study made use of a 96-well multiplate reactor system for the comparative analysis of lignocellulose recalcitrance via integrated hydrothermal pretreatment and enzymatic saccharification at the National Renewable Energy Laboratory.

Funding Information

The authors thank the Research and Graduate Office of the Universidad Autónoma de Nayarit for partial funding. This work was conducted as part of the BioEnergy Science Center (BESC). The BESC is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

Supplementary material

12155_2018_9920_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)

References

  1. 1.
    Tye YY, Lee KT, Wan Abdullah WN, Leh CP (2016) The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sust Energ Rev 60:155–172.  https://doi.org/10.1016/j.rser.2016.01.072 CrossRefGoogle Scholar
  2. 2.
    Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22:490.  https://doi.org/10.3390/molecules22030490 CrossRefGoogle Scholar
  3. 3.
    Pérez-Pimienta JA, López-Ortega MG, Sanchez A (2017) Recent developments in Agave performance as a drought-tolerant biofuel feedstock: agronomics, characterization, and biorefining. Biofuels Bioprod Biorefin 11:732–748.  https://doi.org/10.1002/bbb CrossRefGoogle Scholar
  4. 4.
    Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58.  https://doi.org/10.1016/j.biortech.2015.08.061 CrossRefPubMedGoogle Scholar
  5. 5.
    CRT (2018) Tequila regulatory council. Mexico City, Mexico. Zapopan, Jalisco. https://www.crt.org.mx/EstadisticasCRTweb/. Accessed 8 Mar 2018
  6. 6.
    SAGARPA-SIAP (2018) Mexican system of information about agriculture and fishing. Advance of planting and harvesting for Mexico. Mexico City, Mexico. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do. Accessed 8 Mar 2018
  7. 7.
    Barbosa-García O, Ramos-Ortíz G, Maldonado JL, Pichardo-Molina JL, Meneses-Nava MA, Landgrave JEA, Cervantes-Martínez J (2007) UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila. Spectrochim Acta - Part A Mol Biomol Spectrosc 66:129–134.  https://doi.org/10.1016/j.saa.2006.02.033 CrossRefGoogle Scholar
  8. 8.
    Romo P (2017) Precio de agave pega a sector tequilero. https://www.eleconomista.com.mx/estados/Precio-de-agave-pega-a-sector-tequilero-20171012-0181.html. Accessed 1 Jan 2017
  9. 9.
    Barrera I, Amezcua-Allieri MA, Estupiñan L, Martínez T, Aburto J (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue Agave bagasses. Chem Eng Res Des 107:91–101.  https://doi.org/10.1016/j.cherd.2015.10.015 CrossRefGoogle Scholar
  10. 10.
    Perez-Pimienta JA, Sathitsuksanoh N, Thompson VS, Tran K, Ponce-Noyola T, Stavila V, Singh S, Simmons BA (2017) Ternary ionic liquid–water pretreatment systems of an Agave bagasse and municipal solid waste blend. Biotechnol Biofuels 10:72.  https://doi.org/10.1186/s13068-017-0758-4 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Perez-Pimienta JA, Poggi-Varaldo HM, Ponce-Noyola T, Ramos-Valdivia AC, Chavez-Carvayar JA, Stavila V, Simmons BA (2016) Fractional pretreatment of raw and calcium oxalate-extracted Agave bagasse using ionic liquid and alkaline hydrogen peroxide. Biomass Bioenergy 91:48–55.  https://doi.org/10.1016/j.biombioe.2016.05.001 CrossRefGoogle Scholar
  12. 12.
    Equihua-Sánchez M, Barahona-Pérez LF (2017) Physical and chemical characterization of Agave tequilana bagasse pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate. Waste Biomass Valorization.  https://doi.org/10.1007/s12649-017-0150-4
  13. 13.
    Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). BioEnerg Res 3:134–145.  https://doi.org/10.1007/s12155-010-9087-1 CrossRefGoogle Scholar
  14. 14.
    Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941.  https://doi.org/10.1021/bm101240z CrossRefPubMedGoogle Scholar
  15. 15.
    Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS, Sousa LC, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn Stover. Bioresour Technol 102:6928–6936.  https://doi.org/10.1016/j.biortech.2011.04.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569.  https://doi.org/10.1002/bbb.303 CrossRefGoogle Scholar
  17. 17.
    Sun J, Shi J, Konda NVSNM et al (2017) Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnol Biofuels 10:1–14.  https://doi.org/10.1186/s13068-017-0842-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pérez-Pimienta JA, Vargas-Tah A, López-Ortega KM, Medina-López YN, Mendoza-Pérez JA, Avila S, Singh S, Simmons BA, Loaces I, Martinez A (2017) Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated Agave bagasse for ethanol production. Bioresour Technol 225:191–198.  https://doi.org/10.1016/j.biortech.2016.11.064 CrossRefPubMedGoogle Scholar
  19. 19.
    Perez del Río R, Caballero Caballero M, Hernández Gómez LH, Bernabé Montes JL (2013) Diseño y construcción de una desfibradora de hojas de Agave angustifolia Haw Design and construction of a leaf shredder angustifolia Haw Agave. Rev Ciencias Técnica Agropecu 22:5–14Google Scholar
  20. 20.
    Sluiter A, Hames B, Ruiz R, Scarlata C (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced Natl Renew Energy Lab Golden, CO, NREL/ TP-510-42618 2011Google Scholar
  21. 21.
    Hames B, Ruiz R, Scarlata C, et al (2008) Preparation of samples for compositional analysis. Renew EnergyGoogle Scholar
  22. 22.
    Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2015) Characterization of Agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenergy 75:180–188.  https://doi.org/10.1016/j.biombioe.2015.02.026 CrossRefGoogle Scholar
  23. 23.
    Selig MJ, Tucker MP, Sykes RW, Reichel KL, Brunecky R, Himmel ME, Davis MF, Decker SR (2010) Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol 6:104–111.  https://doi.org/10.1089/ind.2010.0009 CrossRefGoogle Scholar
  24. 24.
    Healey AL, Lupoi JS, Lee DJ, Sykes RW, Guenther JM, Tran K, Decker SR, Singh S, Simmons BA, Henry RJ (2016) Effect of aging on lignin content, composition and enzymatic saccharification in Corymbia hybrids and parental taxa between years 9 and 12. Biomass Bioenergy 93:50–59.  https://doi.org/10.1016/j.biombioe.2016.06.016 CrossRefGoogle Scholar
  25. 25.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  26. 26.
    Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuel 1:123–137.  https://doi.org/10.1021/ef00002a001 CrossRefGoogle Scholar
  27. 27.
    Tuskan G, West D, Bradshaw HD, Neale D, Sewell M, Wheeler N, Megraw B, Jech K, Wiselogel A, Evans R, Elam C, Davis M, Dinus R (1999) Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Appl Biochem Biotechnol 77:55–65.  https://doi.org/10.1385/ABAB:77:1-3:55 CrossRefGoogle Scholar
  28. 28.
    Sykes R, Yung M, Novaes E et al (2009) High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana press, Totowa, pp 169–183CrossRefGoogle Scholar
  29. 29.
    Alemán-Nava GS, Gatti IA, Parra-Saldivar R, Dallemand JF, Rittmann BE, Iqbal HMN (2017) Biotechnological revalorization of tequila waste and by-product streams for cleaner production—a review from bio-refinery perspective. J Clean Prod 172:3713–3720.  https://doi.org/10.1016/j.jclepro.2017.07.134 CrossRefGoogle Scholar
  30. 30.
    Perez-Pimienta JA, Lopez-Ortega MG, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2013) Comparison of the impact of ionic liquid pretreatment on recalcitrance of Agave bagasse and switchgrass. Bioresour Technol 127:18–24.  https://doi.org/10.1016/j.biortech.2012.09.124 CrossRefPubMedGoogle Scholar
  31. 31.
    Thomsen H, Haugaard-Nielsen H (2008) Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass. Ind Microbiol Biotechnol 35:303–311.  https://doi.org/10.1007/s10295-008-0334-9 CrossRefGoogle Scholar
  32. 32.
    Owen NA, Griffiths H (2014) Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates (Agave fourcroydes, Agave salmiana, Agave tequilana and Opuntia ficus-indica) in Australia. GCB Bioenergy 6:687–703.  https://doi.org/10.1111/gcbb.12094 CrossRefGoogle Scholar
  33. 33.
    Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, da Costa Sousa L, Dale BE, Singh S, Simmons BA (2016) Evaluation of Agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223.  https://doi.org/10.1016/j.biortech.2016.03.103 CrossRefPubMedGoogle Scholar
  34. 34.
    Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Ragauskas AJ, Wyman CE (2012) Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2:4951.  https://doi.org/10.1039/c2ra20557b CrossRefGoogle Scholar
  35. 35.
    Yang Q, Pan X (2012) Pretreatment of Agave americana stalk for enzymatic saccharification. Bioresour Technol 126:336–340.  https://doi.org/10.1016/j.biortech.2012.10.018 CrossRefPubMedGoogle Scholar
  36. 36.
    Martin C, Carrillo E, Torres M et al (2006) Determination of the chemical composition of tropical cellulosic materials by the detergent sequential system combined with acid hydrolysis. Cellul Chem Technol 40:399–403Google Scholar
  37. 37.
    Vieira MC, Heinze T, Antonio-Cruz R, Mendoza-Martinez a M (2002) Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and fourcroydes. Cellulose 9:203–212.  https://doi.org/10.1023/A:1020158128506 CrossRefGoogle Scholar
  38. 38.
    Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of Agave bagasse to fuel ethanol. Appl Energy 113:277–286.  https://doi.org/10.1016/j.apenergy.2013.07.036 CrossRefGoogle Scholar
  39. 39.
    Garcia-Reyes RB, Rangel-Mendez JR (2009) Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J Chem Technol Biotechnol 84:1533–1538.  https://doi.org/10.1002/jctb.2215 CrossRefGoogle Scholar
  40. 40.
    Hernández-Meléndez O, Miguel-Cruz F, Montiel C, Hernández-Luna M, Vivaldo-Lima E, Mena-Brito C, Bárzana E (2016) Characterization of blue Agave bagasse (BAB) as raw material for bioethanol production processes by gravimetric, thermal, chromatographic, X-ray diffraction, microscopy, and laser light scattering techniques. BioEnergy Res 9:985–997.  https://doi.org/10.1007/s12155-016-9760-0 CrossRefGoogle Scholar
  41. 41.
    Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38:725–732.  https://doi.org/10.1007/s10295-010-0853-z CrossRefPubMedGoogle Scholar
  42. 42.
    Yang L, Lu M, Carl S, Mayer JA, Cushman JC, Tian E, Lin H (2015) Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 76:43–53.  https://doi.org/10.1016/j.biombioe.2015.03.004 CrossRefGoogle Scholar
  43. 43.
    Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. Bioresources 8:1893–1908.  https://doi.org/10.15376/biores.8.2.1893-1908 CrossRefGoogle Scholar
  44. 44.
    Zamora-Gasga VM, Bello-Pérez LA, Ortíz-Basurto RI, Tovar J, Sáyago-Ayerdi SG (2014) Granola bars prepared with Agave tequilana ingredients: chemical composition and invitro starch hydrolysis. LWT—Food Sci Technol 56:309–314.  https://doi.org/10.1016/j.lwt.2013.12.016 CrossRefGoogle Scholar
  45. 45.
    Agblevor FA, Pereira J (2013) Progress in the summative analysis of biomass feedstocks for biofuels production. Aqueous Pretreat Plant Biomass Biol Chem Convers Fuels Chem:335–354.  https://doi.org/10.1002/9780470975831.ch16
  46. 46.
    Bautista-Justo M, García-Oropeza L, Barboza-Corona JE, Parra-Negrete LA (2001) El Agave tequilana Weber y la produccion de tequila. Acta Univ 11:26–34.  https://doi.org/10.1086/320782 CrossRefGoogle Scholar
  47. 47.
    Rios-González LJ, Morales-Martínez TK, Rodríguez-Flores MF, Rodríguez-de la Garza JA, Castillo-Quiroz D, Castro-Montoya AJ, Martinez A (2017) Autohydrolysis pretreatment assessment in ethanol production from Agave bagasse. Bioresour Technol 242:184–190.  https://doi.org/10.1016/j.biortech.2017.03.039 CrossRefPubMedGoogle Scholar
  48. 48.
    Cedeño Cruz M (1995) Tequila Production. Crit Rev Biotechnol 15:1–11CrossRefGoogle Scholar
  49. 49.
    Lamas R, Sandoval G, Osuna A, et al (2004) Cocimiento y molienda. In: Ciencia y tecnologia del tequila. Avances y perspectivas. p 302Google Scholar
  50. 50.
    Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, Bergeron M, George A, Tran K, Stavila V, Venkatachalam S, Hahn MG, Simmons BA, Singh S (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci 111:E3587–E3595.  https://doi.org/10.1073/pnas.1405685111 CrossRefPubMedGoogle Scholar
  51. 51.
    Li H-Y, Chen X, Wang C-Z, Sun SN, Sun RC (2016) Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes. Biotechnol Biofuels 9:166.  https://doi.org/10.1186/s13068-016-0578-y CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906.  https://doi.org/10.1016/j.rser.2015.04.091 CrossRefGoogle Scholar
  53. 53.
    Balch ML, Holwerda EK, Davis MF, Sykes RW, Happs RM, Kumar R, Wyman CE, Lynd LR (2017) Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling. Energy Environ Sci 10:1252–1261.  https://doi.org/10.1039/C6EE03748H CrossRefGoogle Scholar
  54. 54.
    Renders T, Van den Bosch S, Koelewijn S-F et al (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10:1551–1557.  https://doi.org/10.1039/C7EE01298E CrossRefGoogle Scholar
  55. 55.
    Wen J-L, Yuan T-Q, Sun S-L, Xu F, Sun RC (2014) Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem 16:181–190.  https://doi.org/10.1039/C3GC41752B CrossRefGoogle Scholar
  56. 56.
    Reyes-Rivera J, Canché-Escamilla G, Soto-Hernández M, Terrazas T (2015) Wood chemical composition in species of Cactaceae the relationship between lignification and stem morphology. PLoS One 10:1–17.  https://doi.org/10.1371/journal.pone.0123919 CrossRefGoogle Scholar
  57. 57.
    Zheng J, Choo K, Bradt C, Lehoux R, Rehmann L (2014) Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder. Biotechnol Reports 3:99–107.  https://doi.org/10.1016/j.btre.2014.06.008 CrossRefGoogle Scholar
  58. 58.
    Sathitsuksanoh N, Zhu Z, Wi S, Percival Zhang YH (2011) Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnol Bioeng 108:521–529.  https://doi.org/10.1002/bit.22964 CrossRefPubMedGoogle Scholar
  59. 59.
    Bonilla O, Trujillo H, Guerra S et al (2009) Extracción y Caracterización de la fibra de la hoja de la Lengua de Suegra (Sanseviera trifasciata). Rev Politécnica 30:167–178Google Scholar
  60. 60.
    Li H, Pattathil S, Foston MB, Ding SY, Kumar R, Gao X, Mittal A, Yarbrough JM, Himmel ME, Ragauskas AJ, Hahn MG, Wyman CE (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50.  https://doi.org/10.1186/1754-6834-7-50 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mielenz JR, Rodriguez M, Thompson OA, Yang X, Yin H (2015) Development of Agave as a dedicated biomass source: production of biofuels from whole plants. Biotechnol Biofuels 8:79.  https://doi.org/10.1186/s13068-015-0261-8 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Templeton DW, Sluiter JB, Sluiter A, Payne C, Crocker DP, Tao L, Wolfrum E (2016) Long-term variability in sugarcane bagasse feedstock compositional methods: sources and magnitude of analytical variability. Biotechnol Biofuels 9:223.  https://doi.org/10.1186/s13068-016-0621-z CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefPubMedGoogle Scholar
  64. 64.
    Nobel P, Garcia de Cortazar V (1987) Interception of photosynthetically active radiation and predicted for Agave rosettes. Photosynthetica 21:261–272Google Scholar
  65. 65.
    Nobel PS (1985) Par, water, and temperature limitations on the productivity of cultivated Agave fourcroydes (Henequen). J Appl Ecol 22:157CrossRefGoogle Scholar
  66. 66.
    Nobel PS, García-Moya E, Quero E (1992) High annual productivity of certain Agaves and cacti under cultivation. Plant Cell Environ 15:329–335.  https://doi.org/10.1111/j.1365-3040.1992.tb00981.x CrossRefGoogle Scholar
  67. 67.
    Nobel PS, Valenzuela AG (1987) Environmental responses and productivity of the CAM plant, Agave tequilana. Agric For Meteorol 39:319–334.  https://doi.org/10.1016/0168-1923(87)90024-4 CrossRefGoogle Scholar
  68. 68.
    Yan X, Tan DKY, Inderwildi OR, Smith JAC, King DA (2011) Life cycle energy and greenhouse gas analysis for Agave-derived bioethanol. Energy Environ Sci 4:3110.  https://doi.org/10.1039/c1ee01107c CrossRefGoogle Scholar
  69. 69.
    Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78.  https://doi.org/10.1111/j.1757-1707.2010.01077.x CrossRefGoogle Scholar
  70. 70.
    Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792.  https://doi.org/10.1126/science.1189268 CrossRefPubMedGoogle Scholar
  71. 71.
    McLaughlin SB, Bouton JH, Bransby DI et al (1999) Developing switchgrass as a bioenergy crop. Perspect New Crop New Uses 528.  https://doi.org/10.1081/E-EPCS
  72. 72.
    Nwakaire JN, Ezeoha SL, Ugwuishiwu BO (2013) Production of cellulosic ethanol from wood sawdust. Agric Eng Int CIGR J 15:136–140Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José A. Pérez-Pimienta
    • 1
  • Reyna M. Mojica-Álvarez
    • 1
  • Leticia M. Sánchez-Herrera
    • 2
  • Ashutosh Mittal
    • 3
  • Robert W. Sykes
    • 4
    • 5
  1. 1.Department of Chemical EngineeringUniversidad Autónoma de NayaritTepicMexico
  2. 2.Food Technology UnitUniversidad Autónoma de NayaritTepicMexico
  3. 3.BioSciences CenterNational Renewable Energy LaboratoryGoldenUSA
  4. 4.BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA
  5. 5.National Bioenergy CenterNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations