BioEnergy Research

, Volume 11, Issue 1, pp 95–105 | Cite as

Critical Review of Microalgae LCA Studies for Bioenergy Production

  • Franziska Ketzer
  • Johannes Skarka
  • Christine Rösch


The cultivation of microalgae gained high attention within the last years because of their potential to substitute conventional bioenergy crops. To evaluate algal bioenergy production pathways already at an early stage, several life cycle assessment (LCA) studies have been performed, but their results and conclusions vary drastically. Against this background, this review gives a comparative analysis of 16 recent studies. To allow for a comparison, a meta-approach served to uniform the considered systems. System boundaries have been equalized and the energy return on investment (EROI) has been calculated for each study. Depending on the assumptions made on biomass productivity, lipid content, required energy, and the output of the system, the energetic performance was assessed. Large variations from 0.01 to 3.35 for the EROI could be derived.


Life cycle assessment (LCA) Microalgae Bioenergy Meta-analysis Energy return on investment (EROI) 



The authors gratefully acknowledge financial support by the project EnAlgae, a Strategic Initiative of the INTERREG IVB NWE Programme.

Supplementary material

12155_2017_9880_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 28 kb)


  1. 1.
    Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy Elsevier 38:5892–5901. CrossRefGoogle Scholar
  2. 2.
    Dechema-Fachgruppe “Algenbiotechnologie.” (2016) Mikroalgen-Biotechnologie Gegenwärtiger Stand, Herausforderungen, ZieleGoogle Scholar
  3. 3.
    Williams PJ l B, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554. CrossRefGoogle Scholar
  4. 4.
    Shaishav S, Satyendra T, Singh R (2013) Biohydrogen from algae: fuel of the future. Int Res J Environ Sci 2:44–47Google Scholar
  5. 5.
    Resurreccion EP, Colosi LM, White M a, Clarens AF (2012) Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour Technol Elsevier Ltd 126:298–306. CrossRefGoogle Scholar
  6. 6.
    Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162. CrossRefGoogle Scholar
  7. 7.
    Gerardo ML, Oatley-Radcliffe DL, Lovitt RW (2014) Minimizing the energy requirement of dewatering Scenedesmus sp. by microfiltration: performance, costs, and feasibility. Environ Sci Technol 48:845–853. CrossRefPubMedGoogle Scholar
  8. 8.
    Liu X, Clarens AF, Colosi LM (2012) Algae biodiesel has potential despite inconclusive results to date. Bioresour Technol Elsevier Ltd 104:803–806. CrossRefGoogle Scholar
  9. 9.
    Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy Elsevier Ltd 44:1–10. Google Scholar
  10. 10.
    Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR et al (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1:83–92. CrossRefGoogle Scholar
  11. 11.
    Liu J, Ma X (2009) The analysis on energy and environmental impacts of microalgae-based fuel methanol in China. Energ Policy 37:1479–1488. CrossRefGoogle Scholar
  12. 12.
    International Organization for Standardization. (2006) ISO 14040: environmental management—life cycle assessment—principles and framework; 2006Google Scholar
  13. 13.
    Lardon L, Hélias A, Sialve B (2009) Life-cycle assessment of biodiesel production from microalgae. Foreign Policy Anal:6475–6481Google Scholar
  14. 14.
    Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology. Elsevier Ltd 101:1406–1413. Google Scholar
  15. 15.
    Sevigné Itoiz E, Fuentes-Grünewald C, Gasol CM, Garcés E, Alacid E, Rossi S et al (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335. CrossRefGoogle Scholar
  16. 16.
    Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol Elsevier Ltd 102:207–214. CrossRefGoogle Scholar
  17. 17.
    Yanfen L, Zehao H, Xiaoqian M (2012) Energy analysis and environmental impacts of microalgal biodiesel in China. Energ Policy 45:142–151. CrossRefGoogle Scholar
  18. 18.
    Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol Elsevier Ltd 102:50–56. CrossRefGoogle Scholar
  19. 19.
    Clarens AF, Resurreccion EP, White M a, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819. CrossRefPubMedGoogle Scholar
  20. 20.
    Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol Elsevier Ltd 102:5800–5807. CrossRefGoogle Scholar
  21. 21.
    Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy Elsevier Ltd 88:3507–3514. Google Scholar
  22. 22.
    Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714. CrossRefGoogle Scholar
  23. 23.
    Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott S a, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077. CrossRefGoogle Scholar
  24. 24.
    Frank ED, Elgowainy A, Han J, Wang Z (2012) Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Chang 18:137–158. CrossRefGoogle Scholar
  25. 25.
    Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Life cycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy Elsevier Ltd 154:1062–1071. Google Scholar
  26. 26.
    Tredici MR, Bassi N, Prussi M, Biondi N, Rodolfi L, Chini Zittelli G et al (2015) Energy balance of algal biomass production in a 1-ha “Green Wall panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl Energy Elsevier Ltd 154:1103–1111. Google Scholar
  27. 27.
    Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework. Ambio 37:74–79.[74:EROITA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  28. 28.
    Keoleian GA, Spitzley DV (2006) Life cycle based sustainability metrics. In: Abraham MA (ed) Sustainability Science and Engineering - Defining Principles, 1at ed. Elsevier B.V, pp 127–160Google Scholar
  29. 29.
    Kim S, Dale B (2003) Cumulative energy and global warming impact from the production of biomass for biobased products. J Ind Ecol 7:147–162. CrossRefGoogle Scholar
  30. 30.
    Bradley T, Maga D, Antón S (2015) Unified approach to life cycle assessment between three unique algae biofuel facilities. Appl Energy.
  31. 31.
    Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresourc Technol Elsevier Ltd 102:35–42. CrossRefGoogle Scholar
  32. 32.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43. CrossRefGoogle Scholar
  33. 33.
    Sills DL, Paramita V, Franke MJ, Johnson MC, Akabas TM, Greene CH et al (2013) Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environ Sci Technol 47:687–694. CrossRefPubMedGoogle Scholar
  34. 34.
    Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC et al (2012) Environmental performance of algal biofuel technology options. Environ Sci Technol 46:2451–2459. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Franziska Ketzer
    • 1
  • Johannes Skarka
    • 1
  • Christine Rösch
    • 1
  1. 1.Karlsruhe Institute of TechnologyInstitute for Technology Assessment and Systems AnalysisKarlsruheGermany

Personalised recommendations