BioEnergy Research

, Volume 10, Issue 3, pp 635–647 | Cite as

Identifying Morphological and Mechanical Traits Associated with Stem Lodging in Bioenergy Sorghum (Sorghum bicolor)

  • Francisco E. GomezEmail author
  • Anastasia H. Muliana
  • Karl J. Niklas
  • William L. Rooney


Stem lodging in Sorghum is a major agronomic problem that has far-reaching economic consequences. More rapid and reliable advances in stem lodging resistance could be achieved through development of selective breeding tools that are not dependent on post hoc data or dependent on abiotic or biotic environmental factors. Our objective was to use sorghum to examine how mechanical stability is achieved and lost, and to provide insights into the development of a rapid and reliable phenotyping approach. The biomechanical properties of the stems of six bioenergy sorghum genotypes were investigated using a three-point bending test protocol. Important morphometric data were also collected, and previously collected lodging scores were used to associate with morphological and mechanical traits. Nodes were two to three-folds stronger, stiffer, and more rigid than internodes. In general, internodes were numerically weakest and more rigid between internodes 3 and 6, corresponding to the area where higher stem lodging is observed. Internode strength was negatively correlated with diameter (r = −0.77, P < 0.05) and volume (r = 0.96, P < 0.01), while stem lodging was positively correlated with flexural rigidity (r = 0.85, P < 0.05) and volume (r = 0.78, P < 0.05). The analysis revealed key functional traits that influence the mode and location of stem lodging. Moreover, these results indicate the potential of these methods as a selective breeding tool for indirect selection of stem lodging resistance in bioenergy sorghum.


Bioenergy sorghum Biomechanical properties Stem lodging Three-point bending test 



The authors are thankful to the Texas A&M University Louis Stokes Bridge to Doctorate Fellowship VII Award (No. 1249272) for a graduate fellowship and financial support granted to F.G. The authors would like to  thank Dr. K. Rajagopal for his academic support, Stephen Labar for building the three-point bending test used in this study, and Ceres Corp. for kindly providing seed source and lodging information for some of the genotypes used in this study. The authors would also like to thank all the student workers at the Texas A&M Sorghum Breeding Program for their help phenotyping. We are grateful to the Editor, Antje Herrmann, and two other anonymous reviewers for their comments on this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12155_2017_9826_MOESM1_ESM.docx (9.1 mb)
ESM 1 (DOCX 9281 kb)


  1. 1.
    Speck T, Burgert I (2011) Plant stems: functional design and mechanics. Annu Rev Mater Res 41:169–193CrossRefGoogle Scholar
  2. 2.
    Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766. doi: 10.1098/rsif.2012.0341 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Niklas KJ, Spatz H-C (2012) Plant physics. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  4. 4.
    Wang X, Keplinger T, Gierlinger N, Burgert I (2014) Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann Bot 114(8):1627–1635. doi: 10.1093/aob/mcu180 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gardiner B, Berry P, Moulia B (2016) Review: Wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118CrossRefPubMedGoogle Scholar
  6. 6.
    Berry P, Sterling M, Spink J, Baker C, Sylvester-Bradley R, Mooney S, Tams A, Ennos A (2004) Understanding and reducing lodging in cereals. Adv Agron 84:217–271CrossRefGoogle Scholar
  7. 7.
    Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, ChicagoGoogle Scholar
  8. 8.
    Sterling M, Baker C, Berry P, Wade A (2003) An experimental investigation of the lodging of wheat. Agric For Meteorol 119(3):149–165CrossRefGoogle Scholar
  9. 9.
    Tvd W, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107Google Scholar
  10. 10.
    Maiti R (2012) Crop plant anatomy. CABI, WallingfordCrossRefGoogle Scholar
  11. 11.
    Niklas KJ (1998) Modes of mechanical failure of hollow, septate stems. Ann Bot 81(1):11–21. doi: 10.1006/anbo.1997.0505 CrossRefGoogle Scholar
  12. 12.
    Farquhar T, Zhou J, Wood WH (2002) Competing effects of buckling and anchorage strength on optimal wheat stalk geometry. J Biomech Eng 124(4):441. doi: 10.1115/1.1488934 CrossRefPubMedGoogle Scholar
  13. 13.
    Esechie H, Maranville J, Ross W (1977) Relationship of stalk morphology and chemical composition to lodging resistance in sorghum. Crop Sci 17(4):609–612CrossRefGoogle Scholar
  14. 14.
    Niklas KJ (1990) The mechanical significance of clasping leaf sheaths in grasses: evidence from two cultivars of Avena sativa. Ann Bot 65(5):505–512CrossRefGoogle Scholar
  15. 15.
    Niklas KJ (1998) The mechanical roles of clasping leaf sheaths: evidence from Arundinaria técta (Poaceae) shoots subjected to bending and twisting forces. Ann Bot 81(1):23–34CrossRefGoogle Scholar
  16. 16.
    Niklas K (1997) Relative resistance of hollow, septate internodes to twisting and bending. Ann Bot 80(3):275–287. doi: 10.1006/anbo.1997.0452 CrossRefGoogle Scholar
  17. 17.
    Brenton ZW, Cooper EA, Myers MT, Boyles RE, Shakoor N, Zielinski KJ, Rauh BL, Bridges WC, Morris GP, Kresovich S (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204(1):21–33CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W (2014) Energy sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot 65(13):3479–3489. doi: 10.1093/jxb/eru229 CrossRefPubMedGoogle Scholar
  19. 19.
    Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53(2):105–119. doi: 10.1111/j.1744-7909.2010.01020.x CrossRefPubMedGoogle Scholar
  20. 20.
    Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin 1(2):147–157CrossRefGoogle Scholar
  21. 21.
    Calviño M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotechnol 23(3):323–329CrossRefPubMedGoogle Scholar
  22. 22.
    Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. Genetic improvement of bioenergy crops. Springer, New York, pp 211–248CrossRefGoogle Scholar
  23. 23.
    TERRA (2015) Financial assistance funding opportunity announcement no. DE-FOA-0001211. Technical report. Advanced Research Projects Agency—Energy, WashingtonGoogle Scholar
  24. 24.
    Fedenko JR, Erickson JE, Singh MP (2015) Root lodging affects biomass yield and carbohydrate composition in sweet sorghum. Ind Crop Prod 74:933–938CrossRefGoogle Scholar
  25. 25.
    Worley JW, Cundiff JS, Vaughan DH, Parrish DJ (1991) Influence of sweet sorghum spacing on stalk pith yield. Bioresour Technol 36:133–139CrossRefGoogle Scholar
  26. 26.
    Monk R, Miller F, McBee G (1984) Sorghum improvement for energy production. Biomass 6(1):145–153CrossRefGoogle Scholar
  27. 27.
    Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348–355. doi: 10.1016/j.biombioe.2014.03.052 CrossRefGoogle Scholar
  28. 28.
    Gill JR, Burks PS, Staggenborg SA, Odvody GN, Heiniger RW, Macoon B, Moore KJ, Barrett M, Rooney WL (2014) Yield results and stability analysis from the sorghum regional biomass feedstock trial. BioEnergy Res 7(3):1026–1034. doi: 10.1007/s12155-014-9445-5 CrossRefGoogle Scholar
  29. 29.
    Godoy JGV, Tesso TT (2013) Analysis of juice yield, sugar content, and biomass accumulation in sorghum. Crop Sci 53(4):1288. doi: 10.2135/cropsci2012.04.0217 CrossRefGoogle Scholar
  30. 30.
    Rosenow D, Clark L Drought and lodging resistance for a quality sorghum crop. Proceedings of the 5th annual corn and sorghum industry research conference (Chicago, IL, 6–7 December 1995), American Seed Trade Association, Chicago, ate 1995. pp 82–97Google Scholar
  31. 31.
    Bean B, Baumhardt R, McCollum F, McCuistion K (2013) Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crop Res 142:20–26CrossRefGoogle Scholar
  32. 32.
    Chattopadhyay PS, Pandey KP (1999) Mechanical properties of sorghum stalk in relation to quasi-static deformation. J Agric Eng Res 73(2):199–206. doi: 10.1006/jaer.1999.0406 CrossRefGoogle Scholar
  33. 33.
    Bakeer B, Taha I, El-Mously H, Shehata SA (2013) On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng J 4(2):265–271. doi: 10.1016/j.asej.2012.08.001 CrossRefGoogle Scholar
  34. 34.
    Bashford LL, Maranville JW, Weeks SA, Campbell R (1976) Mechanical-properties affecting lodging of sorghum. Trans ASAE 19(5):962–966CrossRefGoogle Scholar
  35. 35.
    Lemloh M-L, Pohl A, Weber E, Zeiger M, Bauer P, Weiss IM, Schneider AS (2014) Structure-property relationships in mechanically stimulated Sorghum bicolor stalks. Bioinspir Mat 1(1)Google Scholar
  36. 36.
    Hesse L, Wagner ST, Neinhuis C (2016) Biomechanics and functional morphology of a climbing monocot. AoB Plants 8:plw005CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ennos A (1997) Wind as an ecological factor. Trends Ecol Evol 12(3):108–111CrossRefPubMedGoogle Scholar
  38. 38.
    Oladokun MA, Ennos AR (2006) Structural development and stability of rice Oryza sativa L. var. Nerica 1. J Exp Bot 57(12):3123–3130. doi: 10.1093/jxb/erl074 CrossRefPubMedGoogle Scholar
  39. 39.
    Vanderlip R (1993) How a sorghum plant develops. Kansas State University, ManhattanGoogle Scholar
  40. 40.
    Brulé V, Rafsanjani A, Pasini D, Western TL (2016) Hierarchies of plant stiffness. Plant Sci 250:79–96CrossRefPubMedGoogle Scholar
  41. 41.
    Robertson D, Smith S, Gardunia B, Cook D (2014) An improved method for accurate phenotyping of corn stalk strength. Crop Sci 54(5):2038. doi: 10.2135/cropsci2013.11.0794 CrossRefGoogle Scholar
  42. 42.
    Robertson DJ, Smith SL, Cook DD (2015) On measuring the bending strength of septate grass stems. Am J Bot 102(1):5–11. doi: 10.3732/ajb.1400183 CrossRefPubMedGoogle Scholar
  43. 43.
    Gere J, Timoshenko S (1984) Mechanics of materials. Wadsworth, Belmont, pp 351–355Google Scholar
  44. 44.
    Wagner ST, Isnard S, Rowe NP, Samain M-S, Neinhuis C, Wanke S (2012) Escaping the lianoid habit: evolution of shrub-like growth forms in Aristolochia subgenus Isotrema (Aristolochiaceae). Am J Bot 99(10):1609–1629CrossRefPubMedGoogle Scholar
  45. 45.
    Moulia B (2013) Plant biomechanics and mechanobiology are convergent paths to flourishing interdisciplinary research. J Exp Bot 64(15):4617–4633. doi: 10.1093/jxb/ert320 CrossRefPubMedGoogle Scholar
  46. 46.
    Rowe NP, Isnard S, Gallenmüller F, Speck T (2006) Diversity of mechanical architectures in climbing plants: an ecological perspective. Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC, p 35–59Google Scholar
  47. 47.
    Rowe NP, Speck T (1998) Biomechanics of plant growth forms: the trouble with fossil plants. Rev Palaeobot Palynol 102(1):43–62CrossRefGoogle Scholar
  48. 48.
    Schulgasser K, Witztum A (1997) On the strength of herbaceous vascular plant stems. Ann Bot 80(1):35–44CrossRefGoogle Scholar
  49. 49.
    JMP® 12 Fitting Linear Models (2015). 12 edn. SAS Institute Inc., CaryGoogle Scholar
  50. 50.
    Pernet CR, Wilcox RR, Rousselet GA (2013) Robust correlation analyses: false positive and power validation using a new open source Matlab toolbox. Front Psychol 3:606CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ennos A (2000) The mechanics of root anchorage. Adv Bot Res 33:133–157CrossRefGoogle Scholar
  52. 52.
    Fujii A, Nakamura S, Goto Y (2014) Relation between stem growth processes and internode length patterns in sorghum cultivar ‘Kazetachi’. Plant Prod Sci 17(2):185–193CrossRefGoogle Scholar
  53. 53.
    Taylor D, Kinane B, Sweeney C, Sweetnam D, O’Reilly P, Duan K (2015) The biomechanics of bamboo: investigating the role of the nodes. Wood Sci Technol 49(2):345–357CrossRefGoogle Scholar
  54. 54.
    Robertson DJ, Julias M, Gardunia BW, Barten T, Cook DD (2015) Corn stalk lodging: a forensic engineering approach provides insights into failure patterns and mechanisms. Crop Sci 55(6):2833. doi: 10.2135/cropsci2015.01.0010 CrossRefGoogle Scholar
  55. 55.
    Paul-Victor C, Rowe N (2011) Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Ann Bot 107(2):209–218. doi: 10.1093/aob/mcq227 CrossRefPubMedGoogle Scholar
  56. 56.
    Henry H, Aarssen L (1999) The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecol Lett 2(2):89–97CrossRefGoogle Scholar
  57. 57.
    Cordero RA (2016) Neighbourhood structure and light availability influence the variations in plant design of shrubs in two cloud forests of different successional status. Ann Bot 118(1):23–34CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mäkelä A, Vanninen P (1998) Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine. Can J For Res 28(2):216–227CrossRefGoogle Scholar
  59. 59.
    Niklas KJ, Hammond ST (2013) Biophysical effects on plant competition and coexistence. Funct Ecol 27(4):854–864CrossRefGoogle Scholar
  60. 60.
    Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93(10):1546–1565. doi: 10.3732/ajb.93.10.1546 CrossRefPubMedGoogle Scholar
  61. 61.
    Hambäck PA, Beckerman AP (2003) Herbivory and plant resource competition: a review of two interacting interactions. Oikos 101(1):26–37CrossRefGoogle Scholar
  62. 62.
    Rutto LK, Xu Y, Brandt M, Ren S, Kering MK (2013) Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. Journal of Sustainable Bioenergy Systems 03(02):113–118. doi: 10.4236/jsbs.2013.32016 CrossRefGoogle Scholar
  63. 63.
    Vogel S (2013) Comparative biomechanics: life’s physical world. Princeton University Press, PrincetonGoogle Scholar
  64. 64.
    Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Blackwell, OxfordGoogle Scholar
  65. 65.
    Niklas KJ, Speck T (2001) Evolutionary trends in safety factors against wind-induced stem failure. Am J Bot 88(7):1266–1278CrossRefPubMedGoogle Scholar
  66. 66.
    Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Francisco E. Gomez
    • 1
    Email author
  • Anastasia H. Muliana
    • 2
  • Karl J. Niklas
    • 3
  • William L. Rooney
    • 1
  1. 1.Department of Soil and Crop SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaUSA

Personalised recommendations