BioEnergy Research

, Volume 10, Issue 2, pp 575–582 | Cite as

Difference in Soil Methane (CH4) and Nitrous Oxide (N2O) Fluxes from Bioenergy Crops SRC Willow and SRF Scots Pine Compared with Adjacent Arable and Fallow in a Temperate Climate

  • J. Drewer
  • S. Yamulki
  • S. R. Leeson
  • M. Anderson
  • M. P. Perks
  • U. M. Skiba
  • N. P. McNamara


Soil greenhouse gas (GHG) fluxes of methane (CH4) and nitrous oxide (N2O) were measured over a 2-year period from several land use systems on adjacent sites under the same soil and climatic conditions to assess the influence of the transition from arable agricultural (barley) and fallow to perennial bioenergy crops short rotation coppice (SRC) willow (Salix spp.) and short rotation forest (SRF) Scots pine (Pinus sylvestris). There were no significant differences between CH4 and N2O fluxes measured from the SRC, SRF and fallow, but the arable agricultural site showed an order of magnitude higher N2O emissions compared with the others. Fertiliser application to the arable crop was the major factor influencing N2O emissions, and both air and soil temperature showed no significant effects on fluxes between the different land use systems. Soil moisture was significantly different from the arable crop, showing a greater range than from SRF and SRC. Hence, these bioenergy crops might be viable options for water-stressed areas.


Bioenergy Transition SRC SRF Arable 



We would like to thank Balgownie Mains Farm for access to their arable farmed field and Carina Convery for measurements in SRF and fallow. This work was commissioned and funded by the Energy Technologies Institute (ETI) as part of the Ecosystem Land Use Modelling & Soil C Flux Trial (ELUM).

Supplementary material

12155_2017_9824_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)


  1. 1.
    European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance)Google Scholar
  2. 2.
    UK Parliament (2008a) Energy Act 2008. HMSO, LondonGoogle Scholar
  3. 3.
    UK Parliament (2008b) Climate Change Act 2008. HMSO, LondonGoogle Scholar
  4. 4.
    Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009) Future energy potential of Miscanthus in Europe. Global Change Biology Bioenergy 1(2):180–196. doi: 10.1111/j.1757-1707.2009.01012.x CrossRefGoogle Scholar
  5. 5.
    Albanito F, Beringer T, Corstanje R, Poulter B, Stephenson A, Zawadzka J, Smith P (2015) Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy. doi: 10.1111/gcbb.12242 Google Scholar
  6. 6.
    Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675–691CrossRefPubMedGoogle Scholar
  7. 7.
    Dobbie KE, Smith KA, Prieme A, Christensen S, Degorska A, Orlanski P (1996) Effect of land use on the rate of methane uptake by surface soils in northern Europe. Atmos Environ 30(7):1005–1011. doi: 10.1016/1352-2310(95)00416-5 CrossRefGoogle Scholar
  8. 8.
    Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4(4):372–391. doi: 10.1111/j.1757-1707.2011.01116.x CrossRefGoogle Scholar
  9. 9.
    Smith P, Goulding KWT, Smith KA, Powlson DS, Smith JU, Falloon P, Coleman K (2000a) Including trace gas fluxes in estimates of the carbon mitigation potential of UK agricultural land. Soil Use Manag 16(4):251–259CrossRefGoogle Scholar
  10. 10.
    Smith W, Grant B, Desjardins R (2009) Some perspectives on agricultural GHG mitigation and adaptation strategies with respect to the impact of climate change/variability in vulnerable areas. Idojaras 113(1–2):103–115Google Scholar
  11. 11.
    Whitaker J, Ludley KE, Rowe R, Taylor G, Howard DC (2010) Sources of variability in greenhouse gas and energy balances for biofuel production: a systematic review. GCB Bioenergy 2(3):99–112. doi: 10.1111/j.1757-1707.2010.01047.x Google Scholar
  12. 12.
    Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Cambridge University Press, Cambridge Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  13. 13.
    Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8(2):389–395CrossRefGoogle Scholar
  14. 14.
    Drewer J, Finch JW, Lloyd CR, Baggs EM, Skiba U (2012) How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? GCB Bioenergy 4(4):408–419. doi: 10.1111/j.1757-1707.2011.01136.x CrossRefGoogle Scholar
  15. 15.
    Teepe R, Brumme R, Beese F, Ludwig B (2004) Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Sci Soc Am J 68(2):605–611. doi: 10.2136/sssaj2004.6050 CrossRefGoogle Scholar
  16. 16.
    Yamulki S, Jarvis S (2002) Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland. Biol Fertil Soils 36(3):224–231. doi: 10.1007/s00374-002-0530-0 CrossRefGoogle Scholar
  17. 17.
    Dufossé K, Drewer J, Gabrielle B, Drouet JL (2014) Effects of a 20-year old Miscanthus × giganteus stand and its removal on soil characteristics and greenhouse gas emissions. Biomass Bioenergy 69:198–210. doi: 10.1016/j.biombioe.2014.07.003 CrossRefGoogle Scholar
  18. 18.
    Hellebrand HJ, Kern J, Scholz V (2003) Long-term studies on greenhouse gas fluxes during cultivation of energy crops on sandy soils. Atmos Environ 37(12):1635–1644. doi: 10.1016/s1352-2310(03)00015-3 CrossRefGoogle Scholar
  19. 19.
    Hillier J, Dailey G, Aylott M, Riche A, Taylor G, Richter G, Smith P (2008) Spatial predictions of greenhouse gas emissions associated with production of Miscanthus and short rotation coppice in the UK. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 150(3):S181–S182. doi: 10.1016/j.cbpa.2008.04.485 CrossRefGoogle Scholar
  20. 20.
    Hillier J, Whittaker C, Dailey G, Aylott M, Casella E, Richter GM, Riche A, Murphy R, Taylor G, Smith P (2009) Greenhouse gas emissions from four bioenergy crops in England and Wales: integrating spatial estimates of yield and soil carbon balance in life cycle analyses. Global Change Biology Bioenergy 1(4):267–281. doi: 10.1111/j.1757-1707.2009.01021.x CrossRefGoogle Scholar
  21. 21.
    McKay H (2011) Introduction. In: McKay H (ed) Short rotation forestry: review of growth and environmental impacts. Forest Research, Surrey, pp 9–12 Forest Research MonographGoogle Scholar
  22. 22.
    Dondini M, Richards MIA, Pogson M, McCalmond J, Drewer J, Marshall R, Morrison R, Yamulki S, Harris ZM, Alberti G, Siebicke L, Taylor G, Perks M, Finch J, McNamara NP, Smith JU, Smith P (2016) Simulation of greenhouse gases following land-use change to bioenergy crops using the ECOSSE model: a comparison between site measurements and model predictions. GCB Bioenergy 8(5):925–940. doi: 10.1111/gcbb.12298 CrossRefGoogle Scholar
  23. 23.
    Keith AM, Rowe RL, Parmar K, Perks MP, Mackie E, Dondini M, McNamara NP (2015) Implications of land-use change to short rotation forestry in great Britain for soil and biomass carbon. GCB Bioenergy 7(3):541–552. doi: 10.1111/gcbb.12168 CrossRefGoogle Scholar
  24. 24.
    Smith P, Powlson DS, Smith JU, Falloon P, Coleman K (2000b) Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Glob Chang Biol 6(5):525–539. doi: 10.1046/j.1365-2486.2000.00331.x CrossRefGoogle Scholar
  25. 25.
    McCalmont JP, McNamara NP, Donnison IS, Farrar K, Clifton-Brown JC (2016) An interyear comparison of CO2 flux and carbon budget at a commercial-scale land-use transition from semi-improved grassland to Miscanthus x giganteus. GCB Bioenergy. doi: 10.1111/gcbb.12323 Google Scholar
  26. 26.
    Harris ZM, Alberti G, Viger M, Jenkins JR, Rowe R, McNamara NP, Taylor G (2016) Land-use change to bioenergy: grassland to short rotation coppice willow has an improved carbon balance. GCB Bioenergy. doi: 10.1111/gcbb.12347 Google Scholar
  27. 27.
    Yamulki S, Anderson R, Peace A, Morison JIL (2013) Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration. Biogeosciences 10(2):1051–1065. doi: 10.5194/bg-10-1051-2013 CrossRefGoogle Scholar
  28. 28.
    Morison J, Matthews R, Miller G, Perks M, Randle T, Vanguelova E, Ma W, Yamulki S (2012) Understanding the carbon and greenhouse gas balance of forests in Britain. Forestry Commission Research Report. Forestry Commission, EdinburghGoogle Scholar
  29. 29.
    Skiba U, Jones SK, Dragosits U, Drewer J, Fowler D, Rees RM, Pappa VA, Cardenas L, Chadwick D, Yamulki S, Manning AJ (2012) UK emissions of the greenhouse gas nitrous oxide. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1593):1175–1185. doi: 10.1098/rstb.2011.0356 CrossRefGoogle Scholar
  30. 30.
    Kern J, Hellebrand HJ, Gommel M, Ammon C, Berg W (2012) Effects of climatic factors and soil management on the methane flux in soils from annual and perennial energy crops. Biol Fertil Soils 48(1):1–8. doi: 10.1007/s00374-011-0603-z CrossRefGoogle Scholar
  31. 31.
    Khalsa SDS, Almanza CA, Brown PH, Smart DR (2016) Leaf litter C and N cycling from a deciduous permanent crop. Soil Science and Plant Nutrition 62(3):271–276. doi: 10.1080/00380768.2016.1188413 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.CEH EdinburghPenicuikUK
  2. 2.Forest ResearchSurreyUK
  3. 3.Forest ResearchMidlothianUK
  4. 4.CEH LancasterLancasterUK

Personalised recommendations