Advertisement

BioEnergy Research

, Volume 10, Issue 2, pp 525–535 | Cite as

On the Genetic Affinity of Individual Tree Biomass Allometry in Poplar Short Rotation Coppice

  • N. Oliveira
  • R. Rodríguez-Soalleiro
  • C. Pérez-Cruzado
  • I. Cañellas
  • H. Sixto
Article

Abstract

Woody biomass is one of our main resources available to enhance the bio-economy, but its production varies considerably depending on the species, the environment and crop management. The variability associated with these crops complicates the estimation of biomass through prediction models. The specificity of environment or genotype level limits the application of many of the models, which are often developed for use at local geographical levels. Although generalizations involve some loss of accuracy, the inclusion of a wide range of data for a wide range of environments and genotypes can improve model applicability. A total of 11,265 data from short-rotation, high-density poplar plantations (from 22 sites in Spain, covering 29 genotypes belonging to 7 different taxonomic groups) were used to develop biomass prediction models under Mediterranean conditions and to test whether similarities in individual tree biomass allometry occur within the taxonomic group level. A general model and both taxonomic group- and genotype-level models were fitted using weighted nonlinear regression. The simplified model, in which only the basal diameter is included, presented the best model performance, explaining 87% of the variability. The allometric similarities among different genotypes were evaluated in order to explore the relationship between the most frequently used poplar genotypes in the Mediterranean area, and although certain groups were identified, it was not possible to relate these similarities among different genotypes to their taxonomic group affinity. This was also confirmed by comparing the performance of the general models with the taxonomic group-level models when predicting at the genotype level. Although estimates made using the general models are relatively precise, the use of genotype-level models is recommended for more accurate predictions.

Keywords

Populus spp. Biomass Short-rotation forestry (SRF) Allometric models Weighted nonlinear regression Generalized model 

Notes

Acknowledgements

This research was funded by MINECO (Spain) through the RTA2014-00007-C03-01, the PSE-On Cultivos and Lignocrop projects, and the fellowships FPI-SGIT-2015-04 and IJCI-2014-20614. We thank M.J. Hernandez, E. Viscasillas and P. de la Iglesia for their technical support. We are also grateful to Adam Collins for his English language review of the manuscript.

References

  1. 1.
    Tallis MJ, Casella E, Henshall PA, Aylott MJ, Randle TJ, Morison JIL, Taylor G (2013) Development and evaluation of ForestGrowth-SRC a process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow. GCB Bioenergy 5(1):53–66. doi: 10.1111/j.1757-1707.2012.01191.x CrossRefGoogle Scholar
  2. 2.
    Mareschi L, Paris P, Sabatti M, Nardin F, Giovanardi R, Manazzone S, Mugnozza G (2005) The new varieties of poplar biomass guarantee interesting yield. Informatore Agrario 6(18):49–53Google Scholar
  3. 3.
    Sixto H, Cañellas I, van Arendonk J, Ciria P, Camps F, Sánchez M, Sánchez-González M (2015) Growth potential of different species and genotypes for biomass production in short rotation in Mediterranean environments. For Ecol Manag 354:291–299. doi: 10.1016/j.foreco.2015.05.038 CrossRefGoogle Scholar
  4. 4.
    Yemshanov D, McKenney D (2008) Fast-growing poplar plantations as a bioenergy supply source for Canada. Biomass Bioenergy 32:185–197CrossRefGoogle Scholar
  5. 5.
    Sixto H, Salvia J, Barrio M, Ciria MP, Canellas I (2011) Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New For 42(2):163–177. doi: 10.1007/s11056-010-9244-6 CrossRefGoogle Scholar
  6. 6.
    Paris P, Mareschi L, Sabatti M, Pisanelli A, Ecosse A, Nardin F, Scarascia-Mugnozza G (2011) Comparing hybrid Populus clones for SRF across northern Italy after two biennial rotations: survival, growth and yield. Biomass Bioenergy 35(4):1524–1532. doi: 10.1016/j.biombioe.2010.12.050 CrossRefGoogle Scholar
  7. 7.
    Sixto H, Gil P, Ciria P, Camps F, Sánchez M, Cañellas I, Voltas J (2014) Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: analysis of genotypic stability. GCB Bioenergy 6(6):661–671. doi: 10.1111/gcbb.12079 CrossRefGoogle Scholar
  8. 8.
    Dillen SY, Marron N, Bastien C, Ricciotti L, Salani F, Sabatti M, Pinel MPC, Rae AM, Taylor G, Ceulemans R (2007) Effects of environment and progeny on biomass estimations of five hybrid poplar families grown at three contrasting sites across Europe. For Ecol Manag 252(1–3):12–23. doi: 10.1016/j.foreco.2007.06.003 CrossRefGoogle Scholar
  9. 9.
    Pérez-Cruzado C, Sanchez-Ron D, Rodríguez-Soalleiro R, Hernández M, Sánchez-Martín M, Cañellas I, Sixto H (2013) Biomass production assessment from Populus spp. short-rotation irrigated crops in Spain. GCB Bioenergy. doi: 10.1111/gcbb.12061 Google Scholar
  10. 10.
    Tumwebaze SB, Bevilacqua E, Briggs R, Volk T (2013) Allometric biomass equations for tree species used in agroforestry systems in Uganda. Agrofor Syst 87(4):781–795. doi: 10.1007/s10457-013-9596-y CrossRefGoogle Scholar
  11. 11.
    Flores O, Coomes DA (2011) Estimating the wood density of species for carbon stock assessments. Methods Ecol Evol 2(2):214–220CrossRefGoogle Scholar
  12. 12.
    Shaiek O, Loustau D, Trichet P, Meredieu C, Bachtobji B, Garchi S, Aouni MHE (2011) Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Ann For Sci 68(3):443–452CrossRefGoogle Scholar
  13. 13.
    Muukkonen P (2007) Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res 126(2):157–166CrossRefGoogle Scholar
  14. 14.
    Barrio-Anta M, Sixto-Blanco H, Viñas IC-RD, Castedo-Dorado F (2008) Dynamic growth model for I-214 poplar plantations in the northern and central plateaux in Spain. For Ecol Manag 255(3–4):1167–1178. doi: 10.1016/j.foreco.2007.10.022 CrossRefGoogle Scholar
  15. 15.
    Mosseler A, Major J, Labrecque M, Larocque G (2014) Allometric relationships in coppice biomass production for two North American willows (Salix spp.) across three different sites. For Ecol Manag 320:190–196CrossRefGoogle Scholar
  16. 16.
    Verwijst T, Telenius B (1999) Biomass estimation procedures in short rotation forestry. For Ecol Manag 121(1–2):137–146. doi: 10.1016/s0378-1127(98)00562-3 CrossRefGoogle Scholar
  17. 17.
    Ben Brahim M, Gavaland A, Cabanettes A (2000) Generalized allometric regression to estimate biomass of Populus in short-rotation coppice. Scand J For Res 15(2):171–176. doi: 10.1080/028275800750014975 CrossRefGoogle Scholar
  18. 18.
    FAO (2016) International Register of Populus Cultivars. http://www.fao.org/forestry/ipc/69637/en/. Accessed 30 Dec 2016
  19. 19.
    Sixto H, Hernández MJ, de Miguel J, Cañellas I (2013) Red de parcelas de cultivos leñosos en alta densidad y turno corto. Monografías INIA: Serie Forestal, MadridGoogle Scholar
  20. 20.
    Willebrand E, Verwijst T (1993) Population dynamics of willow coppice systems and their implications for management of short-rotation forests. For Chron 69(6):699–704CrossRefGoogle Scholar
  21. 21.
    Kopp R, Abrahamson L, White E, Volk T, Nowak C, Fillhart R (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenergy 20(1):1–7CrossRefGoogle Scholar
  22. 22.
    Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4):573–593Google Scholar
  23. 23.
    Ryan TP (1997) Modern regression methods. Wiley, New YorkGoogle Scholar
  24. 24.
    Pérez-Cruzado C, Fehrmann L, Magdon P, Cañellas I, Sixto H, Kleinn C (2015) On the site-level suitability of biomass models. Environ Model Softw 73(C):14–26. doi: 10.1016/j.envsoft.2015.07.019 CrossRefGoogle Scholar
  25. 25.
    Howse J, Molina F, Taylor J (2000) On the completeness and expressiveness of spider diagram systems. In: Anderson M, Cheng P, Haarslev V (eds) Theory and application of diagrams, vol 1889. Springer, Berlin Heidelberg, pp 26–41. doi: 10.1007/3-540-44590-0_8, Lecture Notes in Computer ScienceCrossRefGoogle Scholar
  26. 26.
    Gil J, Howse J, Kent S Formalizing spider diagrams. Visual Languages, 1999. Proceedings. 1999 I.E. Symposium on, ate 1999. IEEE, pp 130–137Google Scholar
  27. 27.
    Chambers J, Cleveland W, Kleiner B, Tukey P (1983) Graphical techniques for data analysis. Duxbury Press, BelmontGoogle Scholar
  28. 28.
    Antonio N, Tome M, Tome J, Soares P, Fontes L (2007) Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can J For Res 37(5):895–906. doi: 10.1139/x06-276 CrossRefGoogle Scholar
  29. 29.
    Laureysens I, Pellis A, Willems J, Ceulemans R (2005) Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenergy 29(1):10–21. doi: 10.1016/j.biombioe.2005.02.005 CrossRefGoogle Scholar
  30. 30.
    Verlinden MS, Broeckx LS, Van den Bulcke J, Van Acker J, Ceulemans R (2013) Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short-rotation culture. For Ecol Manag 307:101–111. doi: 10.1016/j.foreco.2013.06.062 CrossRefGoogle Scholar
  31. 31.
    Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146(1–3):199–209. doi: 10.1016/S0378-1127(00)00460-6 CrossRefGoogle Scholar
  32. 32.
    Wang C (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manag 222(1–3):9–16. doi: 10.1016/j.foreco.2005.10.074 CrossRefGoogle Scholar
  33. 33.
    Yang Y, Monserud RA, Huang S (2004) An evaluation of diagnostic tests and their roles in validating forest biometric models. Can J For Res 34(3):619–629. doi: 10.1139/x03-230 CrossRefGoogle Scholar
  34. 34.
    Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10(5):545–562CrossRefGoogle Scholar
  35. 35.
    Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94(3):451–459CrossRefPubMedGoogle Scholar
  36. 36.
    Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira ÁCA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, Steege H, Stropp J, Vásquez R, Zelazowski P, Dávila EA, Andelman S, Andrade A, Chao K-J, Erwin T, Di Fiore A, Eurídice Honorio C, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon Rainforest. Science 323(5919):1344–1347. doi: 10.1126/science.1164033 CrossRefPubMedGoogle Scholar
  37. 37.
    Nogueira EM, Fearnside PM, Nelson BW (2008) Normalization of wood density in biomass estimates of Amazon forests. For Ecol Manag 256(5):990–996. doi: 10.1016/j.foreco.2008.06.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • N. Oliveira
    • 1
    • 2
  • R. Rodríguez-Soalleiro
    • 2
  • C. Pérez-Cruzado
    • 2
    • 3
  • I. Cañellas
    • 1
  • H. Sixto
    • 1
  1. 1.Forest Research CentreNational Institute for Agriculture and Food Research and Technology (INIA-CIFOR)MadridSpain
  2. 2.Sustainable Forest Management GroupUniversity of Santiago de CompostelaLugoSpain
  3. 3.Chair of Forest Inventory and Remote SensingGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations