BioEnergy Research

, Volume 10, Issue 2, pp 456–464 | Cite as

Soil Carbon and Nitrogen Responses to Nitrogen Fertilizer and Harvesting Rates in Switchgrass Cropping Systems

  • Zachary P. ValdezEmail author
  • William C. Hockaday
  • Caroline A. Masiello
  • Morgan E. Gallagher
  • G. Philip Robertson


The environmental sustainability of bioenergy cropping systems depends upon multiple factors such as crop selection, agricultural practices, and the management of carbon (C), nitrogen (N), and water resources. Perennial grasses, such as switchgrass (Panicum virgatum L.), show potential as a sustainable bioenergy source due to high yields on marginal lands with low fertilizer inputs and an extensive root system that may increase sequestration of C and N in subsurface soil horizons. We quantified the C and N stocks in roots, free particulate, and mineral-associated soil organic matter pools in a 4-year-old switchgrass system following conversion from row crop agriculture at the W.K. Kellogg Biological Station in southwest Michigan. Crops were fertilized with nitrogen at either 0, 84, or 196 kg N ha−1 and harvested either once or twice annually. Twice-annual harvesting caused a reduction of C and N stocks in the relatively labile roots and free-particulate organic matter pools. Nitrogen fertilizer significantly reduced total soil organic C and N stocks, particularly in the stable, mineral-associated C and N pools at depths greater than 15 cm. The largest total belowground C stocks in biomass and soil occurred in unfertilized plots with annual harvesting. These findings suggest that fertilization in switchgrass agriculture moderates the sequestration potential of the soil C pool.


Switchgrass Panicum virgatum Carbon cycle Nitrogen Bioenergy Biofuel Soil organic matter Biogeochemistry Greenhouse gases 



Support for WCH and ZPV was provided by USDA (AFRI-2011-67009-20074), the Glasscock Energy Research Scholarship, and NSF (DGE-1356113). The field station and switchgrass trials were supported by Great Lakes Bioenergy Research Center grants (Office of Science DE-FCO2-07ER64494 and Office of Energy Efficiency and Renewable Energy DE-ACO5-76RL01830) and the NSF Long-term Ecological Research Program (DEB 1027253). The authors acknowledge the important contributions of S. Vanderwulp, P. Jasrotia, A. Corbin of the KBS, Baylor Professor J.D.W. White, and Baylor students J. Von Bargen, C. Meyers, N. Cestari, R. Davis, and G. Moreira.

Supplementary material

12155_2016_9810_MOESM1_ESM.docx (77 kb)
ESM 1 (DOCX 76 kb)


  1. 1.
    Paul EA, Collins HP, Leavitt SW (2001) Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104(3–4):239–256. doi: 10.1016/S0016-7061(01)00083-0 CrossRefGoogle Scholar
  2. 2.
    Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389(6647):170–173. doi: 10.1038/38260 CrossRefGoogle Scholar
  3. 3.
    Trumbore, Susan. 2000. “Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics.” Ecological Applications, April.
  4. 4.
    Lal R, Griffin M, Apt J, Lave L, Granger Morgan M (2004) Managing soil carbon. Science 304(5669):393–393. doi: 10.1126/science.1093079 CrossRefPubMedGoogle Scholar
  5. 5.
    Liebig, M. A., J. A. Morgan, J. D. Reeder, B. H. Ellert, H. T. Gollany, and G. E. Schuman. 2005. “Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada.” Soil and Tillage Research, Greenhouse Gas Contributions and Mitigation Potential in Agricultural Regions of North America, 83 (1): 25–52. doi: 10.1016/j.still.2005.02.008.
  6. 6.
    Bransby DI, McLaughlin SB, Parrish DJ (1998) A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenergy 14(4):379–384. doi: 10.1016/S0961-9534(97)10074-5 CrossRefGoogle Scholar
  7. 7.
    Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86(Special Issue):1315–1325. doi: 10.4141/P06-136 CrossRefGoogle Scholar
  8. 8.
    Wright L, Turhollow A (2010) Switchgrass selection as a ‘model’ bioenergy crop: a history of the process. Biomass Bioenergy 34(6):851–868. doi: 10.1016/j.biombioe.2010.01.030 CrossRefGoogle Scholar
  9. 9.
    Jung JY, Lal R, Jastrow JD, Tyler DD (2011) Nitrogenous fertilizer effects on soil structural properties under switchgrass. Agric Ecosyst Environ 141(1–2):215–220. doi: 10.1016/j.agee.2011.01.016 CrossRefGoogle Scholar
  10. 10.
    Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the Midwest USA. Agron J 94(3):413–420. doi: 10.2134/agronj2002.0413 CrossRefGoogle Scholar
  11. 11.
    Frank AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44(4):1391. doi: 10.2135/cropsci2004.1391 CrossRefGoogle Scholar
  12. 12.
    Garten CT, Wullschleger SD (2000) Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. Journal of Environment Quality 29(2):645. doi: 10.2134/jeq2000.00472425002900020036x CrossRefGoogle Scholar
  13. 13.
    Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31(7–8):697–710. doi: 10.1016/S0146-6380(00)00049-8 CrossRefGoogle Scholar
  14. 14.
    Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56(6):717–725. doi: 10.1111/j.1365-2389.2005.00706.x Google Scholar
  15. 15.
    Lützow MV, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39(9):2183–2207. doi: 10.1016/j.soilbio.2007.03.007 CrossRefGoogle Scholar
  16. 16.
    Torn MS, Kleber M, Zavaleta ES, Zhu B, Field CB, Trumbore SE (2013) A dual isotope approach to isolate soil carbon pools of different turnover times. Biogeosciences 10(12):8067–8081. doi: 10.5194/bg-10-8067-2013 CrossRefGoogle Scholar
  17. 17.
    Gregorich EG, Janzen HH (1996) Storage of soil carbon in the light fraction and macroorganic matter. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, pp 167–185.,+1996+soil+carbon&ots=kV9z1SQ0e7&sig=KN-MdTYg7jHyc2DS0ncchPZFzOM#v=onepage&q&f=false Google Scholar
  18. 18.
    Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62(5):1367. doi: 10.2136/sssaj1998.03615995006200050032x CrossRefGoogle Scholar
  19. 19.
    Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Glob Biogeochem Cycles 16(4):64–61Google Scholar
  20. 20.
    Janzen HH, Campbell CA, Brandt SA, Townley-Smith (1992) Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J 56(6):1799–1806. doi: 10.2136/sssaj1992.03615995005600060025x CrossRefGoogle Scholar
  21. 21.
    Lützow MV, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171(1):111–124. doi: 10.1002/jpln.200700047 CrossRefGoogle Scholar
  22. 22.
    Philip Robertson G, Hamilton SK (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecological Applications : A Publication of the Ecological Society of America 21(4):1055–1067. doi: 10.2307/23022979 CrossRefGoogle Scholar
  23. 23.
    Stewart, Catherine E., Ronald F. Follett, Elizabeth G. Pruessner, Gary E. Varvel, Kenneth P. Vogel, and Robert B. Mitchell. 2014. “Nitrogen and harvest effects on soil properties under rainfed switchgrass and no-till corn over 9 years: implications for soil quality.” GCB Bioenergy, January, n/a-n/a. doi: 10.1111/gcbb.12142.
  24. 24.
    Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. BioEnergy Research 5(4):866–875. doi: 10.1007/s12155-012-9198-y CrossRefGoogle Scholar
  25. 25.
    Heggenstaller AH, Moore KJ, Liebman M, Anex RP (2009) Nitrogen influences biomass and nutrient partitioning by perennial, warm-season grasses. Agron J 101:1363. doi: 10.2134/agronj2008.0225x CrossRefGoogle Scholar
  26. 26.
    Lee DK, Owens VN, Doolittle JJ (2007) Switchgrass and soil carbon sequestration response to ammonium nitrate, manure, and harvest frequency on conservation reserve program land. Agron J 99:462. doi: 10.2134/agronj2006.0152 CrossRefGoogle Scholar
  27. 27.
    Ruan L, Bhardwaj AK, Hamilton SK, Philip Robertson G (2016) Nitrogen fertilization challenges the climate benefit of cellulosic biofuels. Environ Res Lett 11(6):64007. doi: 10.1088/1748-9326/11/6/064007 CrossRefGoogle Scholar
  28. 28.
    Ma Z, Wood CW, Bransby DI (2000) Soil management impacts on soil carbon sequestration by switchgrass. Biomass Bioenergy 18(6):469–477. doi: 10.1016/S0961-9534(00)00013-1 CrossRefGoogle Scholar
  29. 29.
    Tiemann, Lisa K., and A. Stuart Grandy. 2014. “Mechanisms of soil carbon accrual and storage in bioenergy cropping systems.” GCB Bioenergy, n/a-n/a. doi: 10.1111/gcbb.12126
  30. 30.
    Robertson GP, Hamilton SK (2015) Long-term ecological research at the Kellogg Biological Station LTER site. In: The ecology of agricultural landscapes: long-term research on the path to sustainability. Oxford University Press, New York, New York, USA, pp 1–32. Google Scholar
  31. 31.
    Crum, J.R., and H.P. Collins. 1995. “KBS soils [Online]. W.K. Kellogg Biological Station Long-Term Ecological Research Project, Michigan State University, Hickory Corners, MI.”
  32. 32.
    Brejda, John J. 2000. “Fertilization of native warm-season grasses.” Native Warm-Season Grasses: Research Trends and Issues cssaspecialpubl (nativewarmseaso): 177–200. doi: 10.2135/cssaspecpub30.c12.
  33. 33.
    Warnke D, Dahl J, Lee J (2009) Nutrient recommendations for field crops in Michigan. Michigan State Univeristy Extension Bulletin E2904.
  34. 34.
    Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1(1):75–96. doi: 10.1111/j.1757-1707.2008.01001.x CrossRefGoogle Scholar
  35. 35.
    Schrumpf M, Kaiser K, Guggenberger G, Kogel-Knabner I, Schulze E-D (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10(3):1675–1691CrossRefGoogle Scholar
  36. 36.
    Gill RA, Burke IC (2002) Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241(2):233–242. doi: 10.1023/A:1016146805542 CrossRefGoogle Scholar
  37. 37.
    Rumpel C, Kögel-Knabner I (2010) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1–2):143–158. doi: 10.1007/s11104-010-0391-5 Google Scholar
  38. 38.
    Keiluweit M, Nico PS, Kleber M, Fendorf S (2016) Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127(2–3):157–171. doi: 10.1007/s10533-015-0180-6 CrossRefGoogle Scholar
  39. 39.
    LaRowe DE, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Acta 75(8):2030–2042. doi: 10.1016/j.gca.2011.01.020 CrossRefGoogle Scholar
  40. 40.
    Wang Y, Amundson R, Trumbore S (1996) Radiocarbon dating of soil organic matter. Quat Res 45(3):282–288. doi: 10.1006/qres.1996.0029 CrossRefGoogle Scholar
  41. 41.
    Otto A, Shunthirasingham C, Simpson MJ (2005) A comparison of plant and microbial biomarkers in grassland soils from the prairie ecozone of Canada. Org Geochem 36(3):425–448. doi: 10.1016/j.orggeochem.2004.09.008 CrossRefGoogle Scholar
  42. 42.
    Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269(1–2):341–356. doi: 10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  43. 43.
    Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environmental Science & Technology 41(23):8070–8076. doi: 10.1021/es071217x CrossRefGoogle Scholar
  44. 44.
    Jr G, Charles T, Brice DJ, Castro HF, Graham RL, Mayes MA, Phillips JR, Post WM III et al (2011) Response of ‘Alamo’ switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agric Ecosyst Environ 140(1–2):289–297. doi: 10.1016/j.agee.2010.12.016 Google Scholar
  45. 45.
    Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20(7):2356–2367. doi: 10.1111/gcb.12475 CrossRefPubMedGoogle Scholar
  46. 46.
    Nottingham, Andrew T., Benjamin L. Turner, Andrew W. Stott, and Edmund V. J. Tanner. 2015. “Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils.” Soil Biol Biochem 80 (January): 26–33. doi: 10.1016/j.soilbio.2014.09.012.
  47. 47.
    Bach EM, Hofmockel KS (2016) A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy. GCB Bioenergy 8(3):588–599. doi: 10.1111/gcbb.12267 CrossRefGoogle Scholar
  48. 48.
    Dimoyiannis D (2009) Seasonal soil aggregate stability variation in relation to rainfall and temperature under Mediterranean conditions. Earth Surf Process Landf 34(6):860–866. doi: 10.1002/esp.1785 CrossRefGoogle Scholar
  49. 49.
    Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantifcation of priming effects. Soil Biol Biochem 32:1485–1198CrossRefGoogle Scholar
  50. 50.
    De Vries, Franciska T., Helene Bracht Jørgensen, Katarina Hedlund, and Richard D. Bardgett. 2015. “Disentangling plant and soil microbial controls on carbon and nitrogen loss in grassland mesocosms.” Journal of Ecology, February, n/a-n/a. doi: 10.1111/1365-2745.12383.
  51. 51.
    Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF (2015) Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem 91(December):279–290. doi: 10.1016/j.soilbio.2015.09.005 CrossRefGoogle Scholar
  52. 52.
    Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Miadenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zachary P. Valdez
    • 1
    Email author
  • William C. Hockaday
    • 1
    • 2
  • Caroline A. Masiello
    • 3
  • Morgan E. Gallagher
    • 3
  • G. Philip Robertson
    • 4
  1. 1.Institute of Ecological, Earth, and Environmental SciencesBaylor UniversityWacoUSA
  2. 2.Department of GeosciencesBaylor UniversityWacoUSA
  3. 3.Department of Earth ScienceRice UniversityHoustonUSA
  4. 4.W.K. Kellogg Biological Station and Department of Plant, Soil and Microbial SciencesMichigan State UniversityHickory CornersUSA

Personalised recommendations