BioEnergy Research

, Volume 10, Issue 2, pp 417–426 | Cite as

Abscisic Acid-Induced Starch Accumulation in Bioenergy Crop Duckweed Spirodela polyrrhiza

  • Xuezhi Wang
  • Weihua CuiEmail author
  • Weiwu Hu
  • Chuanping Feng


Spirodela polyrrhiza, a fast-growing duckweed with high starch and low lignin content, shows promise as a feedstock for bioenergy. Abscisic acid (ABA) is a biological hormone that controls plant growth and stress response. The effects of different ABA concentrations (0, 1.0 × 10−5, 1.0 × 10−4, 1.0 × 10−3, 1.0 × 10−2, and 1.0 × 10−1 mg/L) on duckweed biomass growth, carbon dioxide fixation, formation of photosynthetic pigments (Chlorophyll a (Chla), Chlorophyll b (Chlb), and carotenoids), the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), and the starch content of biomass were investigated in this study. ABA at concentrations lower than 1.0 × 10−3 mg/L promoted carbon dioxide fixation, whereas it inhibited carbon dioxide fixation at concentrations over 1.0 × 10−3 mg/L. ABA enhanced SSS and SBE activities at concentrations lower than 1.0 × 10−2 mg/L. ABA treatment increased the content of Chla, Chlb, and carotenoids and resulted in the enhancement of starch content. Chla content gradually increased with the increasing concentration of ABA (1.0 × 10−5 to 1.0 × 10−2 mg/L). After culturing for 10 days, starch content in 1.0 × 10−2 mg/L ABA medium reached 35.3% of dry weight (DW), which was the highest level in this study. This suggests that there is a great potential to develop a technology to increase starch accumulation in duckweed which can be used as an alternative to corn, sugarcane, or other food crops as a starch source.


Spirodela polyrrhiza Biomass Starch Abscisic acid (ABA) δ13Enzyme 



The authors would like to acknowledge financial support from the National Natural Science Foundation of China (No. 51309206) and the Fundamental Research Funds for the Central Universities (No. 2652015126).


  1. 1.
    Yin Y, Yu C, Yu L, Zhao J, Sun C, Ma Y, Zhou G (2015) The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresource Technol 187:84–90. doi: 10.1016/j.biortech.2015.03.097 CrossRefGoogle Scholar
  2. 2.
    Keshwani DR (2010) Biomass chemistry. In: Cheng J (ed) Biomass to renewable energy processes. CRC Press, Boca Raton, pp. 23–27Google Scholar
  3. 3.
    Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol 17:16–23. doi: 10.1111/plb.12216 CrossRefPubMedGoogle Scholar
  4. 4.
    Huang M, Fang Y, Xiao Y, Sun J, Jin Y, Tao X, Ma X, He K, Zhao H (2014) Proteomic analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Ind Crop Prod 59:299–308. doi: 10.1016/j.indcrop.2014.05.029 CrossRefGoogle Scholar
  5. 5.
    Yu C, Sun C, Yu L, Zhu M, Xu H, Zhao J, Ma Y, Zhou G (2014) Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol. PLoS One 9:e115023. doi: 10.1371/journal.pone.0115023 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu Y, Fang Y, Huang MJ, Jin YL, Sun JL, Tao X, Zhang GH, He KZ, Zhao Y, Zhao H (2015) Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnol Biofuels 8:64. doi: 10.1186/s13068-015-0245-8 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cheng JJ, Stomp A-M (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean - Soil, Air, Water 37:17–26. doi: 10.1002/clen.200800210 CrossRefGoogle Scholar
  8. 8.
    Zhao X, Moatesa GK, Wellnera N, Collinsa SRA, Colemanb MJ, Waldrona KW (2014) Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohyd Polym 111:410–418. doi: 10.1016/j.carbpol.2014.04.079 CrossRefGoogle Scholar
  9. 9.
    Xu JL, Cui WH, Cheng JJ, Stomp AM (2011) Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 110:67–72. doi: 10.1016/j.biosystemseng.2011.06.007 CrossRefGoogle Scholar
  10. 10.
    Su H, Xu G, Chen H, Xu Y (2015) Enriching duckweed as an energy crop for producing biobutanol using enzyme hydrolysis pretreatments and strengthening fermentation process using pH-stat. ACS Sustain Chem Eng 3:2002–2011. doi: 10.1021/acssuschemeng.5b00538 CrossRefGoogle Scholar
  11. 11.
    Baron KN (2013) GRAM genes and abscisic acid (ABA) metabolism in the reproductive development of Arabidopsis thaliana. Dissertation, University of Manitoba, Winnipeg, pp. 23–44Google Scholar
  12. 12.
    Yang J, Zhang J, Wang Z, Xu G, Zhu Q (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629. doi: 10.1104/pp.104.041038 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hazubska-Przybył T, Kalemba E, Ratajczak E, Bojarczuk K (2016) Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiol Plant 38:59. doi: 10.1007/s11738-016-2078-x CrossRefGoogle Scholar
  14. 14.
    Borzenkova RA, Borovkova MP (2003) Developmental patterns of phytohormone content in the cortex and pith of potato tubers as related to their growth and starch content. Russ J Plant Physl 50:119–124. doi: 10.1023/A:1021957022595 CrossRefGoogle Scholar
  15. 15.
    Wang W, Messing J (2012) Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrrhiza (greater duckweed). BMC Plant Biol 12:5. doi: 10.1186/1471-2229-12-5 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang Y (2013) Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar. J Genet 92:63–67. doi: 10.1007/s12041-013-0227-1 CrossRefPubMedGoogle Scholar
  17. 17.
    Smart CC, Fleming AJ, Chaloupkova K, Hanke DE (1995) The physiological role of abscisic acid in eliciting turion morphogenesis. Plant Physiol 108:623–632. doi: 10.1104/pp.108.2.623 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Arnon DI (1950) The water-culture method for growing plants without soil. College of Agriculture University of California, Berkeley Calif, p. 347Google Scholar
  19. 19.
    Bergmann BA, Cheng J, Classen J, Stomp A-M (2000) In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technol 73:13–20. doi: 10.1016/S0960-8524(99)00137-6 CrossRefGoogle Scholar
  20. 20.
    Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J, Werner RA, Saurer M, Rennenberg H, Buchmann N, Gessler A (2008) Temporal dynamics of the carbon isotope composition in a Pinussylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156:737–750. doi: 10.1007/s00442-008-1030-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Havlíková L, Šatínský D, Opletal L, Solich P (2014) A fast determination of chlorophylls in barley grass juice powder using HPLC fused-core column technology and HPTLC. Food Anal Method 7:629–635. doi: 10.1007/s12161-013-9665-x CrossRefGoogle Scholar
  22. 22.
    Josefson AB, Norkko J, Norkko A (2012) Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: role of oxygen and benthic fauna. Marine Ecol-Prog Ser 455:33–49CrossRefGoogle Scholar
  23. 23.
    Sluiter A, Sluiter J (2005) Determination of starch in solid biomass samples by HPLC, laboratory analytical procedure NREL/TP-510e42624. National Renewable Energy Laboratory Golden, ColoradoGoogle Scholar
  24. 24.
    Joshi-Saha A, Valon C, Leung J (2011) Abscisic acid signal off the STARTing block. Mol Plant 4:562–580. doi: 10.1093/mp/ssr055 CrossRefPubMedGoogle Scholar
  25. 25.
    Wang J, Lin L, Luo L, Liao M, Lv X, Wang Z, Liang D, Xia H, Wang X, Lai Y, Tang Y (2016) The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum. Environ Monit Assess 188:182. doi: 10.1007/s10661-016-5194-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Mclaren JS, Smith H (1976) The effect of abscisic acid on growth, photosynthetic rate and carbohydrate metabolism in Lemna minor L. New Phytol 76:11–20. doi: 10.1111/j.1469-8137.1976.tb01433.x CrossRefGoogle Scholar
  27. 27.
    Tanaka Y, Nose T, Jikumaru Y, Kamiya Y (2013) ABA inhibits entry into stomatal − lineage development in Arabidopsis leaves. Plant J 74:448–457. doi: 10.1111/tpj.12136 CrossRefPubMedGoogle Scholar
  28. 28.
    Agehara S, Leskovar DI (2012) Characterizing concentration effects of exogenous abscisic acid on gas exchange, water relations, and growth of muskmelon seedlings during water stress and rehydration. J Am Soc Hortic Sci 137:400–410Google Scholar
  29. 29.
    Calvin M (1976) Photosynthesis as a resource for energy and materials. Photochem Photobiol 23:425–444. doi: 10.1111/j.1751-1097.1976.tb07276.x CrossRefPubMedGoogle Scholar
  30. 30.
    Raschke K, Hedrich R (1985) Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. Planta 163:105–118. doi: 10.1007/BF00395904 CrossRefPubMedGoogle Scholar
  31. 31.
    Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244. doi: 10.1007/s00425-006-0325-x CrossRefPubMedGoogle Scholar
  32. 32.
    Jones MR, Fyfe PK (2004) Photosynthesis: a new step in oxygen evolution. Curr Biol 14:R320–R322. doi: 10.1016/j.cub.2004.03.055 CrossRefPubMedGoogle Scholar
  33. 33.
    Barickman TC, Kopsell DA, Sams CE (2014) Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J Am Soc Hortic Sci 139:261–266Google Scholar
  34. 34.
    Pospisilova J, Catsky J, Synkova H, Machackova I, Solarova J (1993) Gas-exchange and in-vivo chlorophyll fluorescence in potato and tobacco plantlets in-vitro as affected by various concentrations of 6-benzylaminopurine. Photosynthetica 29:1–12Google Scholar
  35. 35.
    Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555:40–44. doi: 10.1016/S0014-5793(03)01124-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Abdul JC, Manivannan P, Sankar B, Kishorekumar A, Sankari S, Panneerselvam R (2007) Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthusroseus. Process Biochem 42:1566–1570. doi: 10.1016/j.procbio.2007.08.006 CrossRefGoogle Scholar
  37. 37.
    Ivanov AG, Krol M, Maxwell D, Huner NPA (1995) Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. FEBS Lett 371:61–64. doi: 10.1016/0014-5793(95)00872-7 CrossRefPubMedGoogle Scholar
  38. 38.
    Kim Y, Hwang I, Jung H, Park JI, Kang JG, Nou IS (2016) Genome-wide classification and abiotic stress-responsive expression profiling of carotenoid oxygenase genes in Brassica rapa and Brassica oleracea. J Plant Growth Regul 35:202–214. doi: 10.1007/s00344-015-9520-y CrossRefGoogle Scholar
  39. 39.
    Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin PlantBiol 15:282–292. doi: 10.1016/j.pbi.2012.03.016 CrossRefGoogle Scholar
  40. 40.
    Nakamura Y, Yuki K, Park S-Y, Ohya T (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol 30:833–839CrossRefGoogle Scholar
  41. 41.
    Ahmadi A, Baker DA (1999) Effects of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regul 28:187–197. doi: 10.1023/A:1006223925694 CrossRefGoogle Scholar
  42. 42.
    Baguma Y, Sun C, Borén M, Olsson H, Rosenqvist S, Mutisya J, Rubaihayo PR, Jansson C (2008) Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis. Plant Signal Behav 3:439–445. doi: 10.4161/psb.3.7.5715 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhu G, Ye N, Yang J, Peng X, Zhang J (2011) Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot 62:3907–3916. doi: 10.1093/jxb/err088 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cui W, Xu J, Cheng JJ, Stomp AM (2011) Starch accumulation in duckweed for bioethanol production. Biological Eng Transactions 3:187–197CrossRefGoogle Scholar
  45. 45.
    Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant J 26:421–433. doi: 10.1046/j.1365-313X.2001.2641043.x CrossRefPubMedGoogle Scholar
  46. 46.
    Finkelstein RR, Gibson SI (2001) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32. doi: 10.1016/S1369-5266(01)00225-4 CrossRefGoogle Scholar
  47. 47.
    Wei L, Wang L, Yang Y, Liu G, Wu Y, Guo T, Kang G (2015) Abscisic acid increases leaf starch content of polyethylene glycol-treated wheat seedlings by temporally increasing transcripts of genes encoding starch synthesis enzymes. Acta Physiol Plant 37:206. doi: 10.1007/s11738-015-1960-2 CrossRefGoogle Scholar
  48. 48.
    Keeling PL, Bacon PJ, Holt DC (1993) Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191:342–348CrossRefGoogle Scholar
  49. 49.
    Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29:353–366. doi: 10.1111/j.1365-3040.2005.01480.x CrossRefPubMedGoogle Scholar
  50. 50.
    Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Phys 39:439–473. doi: 10.1146/annurev.arplant.39.1.439 CrossRefGoogle Scholar
  51. 51.
    Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho T-HD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells:site ofaction of the protein kinase PKABA1 in relation to gibberellin signalingmolecules. Plant Cell 13:667–679CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xuezhi Wang
    • 1
  • Weihua Cui
    • 1
    Email author
  • Weiwu Hu
    • 2
  • Chuanping Feng
    • 1
  1. 1.School of Water Resources and EnvironmentChina University of GeosciencesBeijingChina
  2. 2.The Journal CenterChina University of GeosciencesBeijingChina

Personalised recommendations