BioEnergy Research

, Volume 9, Issue 4, pp 1142–1154 | Cite as

Low-Input Fermentations of Agave tequilana Leaf Juice Generate High Returns on Ethanol Yields

  • Kendall R. Corbin
  • Natalie S. Betts
  • Nick van Holst
  • Vladimir Jiranek
  • Don Chambers
  • Caitlin S. Byrt
  • Geoffrey B. Fincher
  • Rachel A. BurtonEmail author


During tequila production, up to 75 % w/w of the Agave plant is discarded when leaves are removed from the stem. The discarded leaves represent an extensive amount of unexploited biomass that was used here for bioethanol production in no-input fermentations, where no acid or enzymatic hydrolysis, supplementation of nutrients or standardization of carbohydrate content occur. Ethanol yield from Agave leaf juice is unaffected by sterilization but reduced if fermentation is reliant solely on endogenous microorganisms. Non-Saccharomyces yeasts, including Kluyveromyces marxianus and Candida akabanensis, proved to be more robust than standard Saccharomyces spp. and yielded up to 88 % of the theoretical maximum ethanol from leaf juice. Combining leaf and stem juice, as from a whole plant, was predicted to maximize yield at up to 19,439 L/ha of ethanol from mature plants.


Agave tequilana Ethanol Fermentation Non-Saccharomyces 



Crassulacean acid metabolism


Total soluble solids


Yeast extract-peptone-dextrose



This work was supported by grants from the Australian Research Council (ARC). We would like to thank Professor Joseph Holtum of James Cook University for assistance with Agave sample collection and transport of materials. Our thanks are also due to Associate Professor Paul Grbin (University of Adelaide) for providing access to his laboratory facility.

Supplementary material

12155_2016_9755_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)
12155_2016_9755_MOESM2_ESM.docx (18 kb)
ESM 2 (DOCX 18 kb)
12155_2016_9755_MOESM3_ESM.docx (164 kb)
ESM 3 (DOCX 163 kb)
12155_2016_9755_MOESM4_ESM.docx (17 kb)
ESM 4 (DOCX 17 kb)


  1. 1.
    Robinson J, Harding J (1999) The Oxford companion to wine. Oxford University Press.Google Scholar
  2. 2.
    Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang Z, O’Hara IM, Mundree S, Gao B, Ball AS, Zhu N, Bai Z, Jin B (2016) Biofuels from food processing wastes. Curr Opin Biotechnol 38:97–105CrossRefPubMedGoogle Scholar
  4. 4.
    Nava-Cruz NY, Medina-Morales MA, Martinez JL, Rodriguez R, Aguilar CN (2015) Agave biotechnology: an overview. Crit Rev Biotechnol 35(4):546–559CrossRefPubMedGoogle Scholar
  5. 5.
    Cedeño MC (1995) Tequila production. Crit Rev Biotechnol 15:1–11. doi: 10.3109/07388559509150529 CrossRefPubMedGoogle Scholar
  6. 6.
    Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–360. doi: 10.1104/pp.120.2.351 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kadam K, Newman M (1997) Development of a low-cost fermentation medium for ethanol production from biomass. Appl Microbiol Biotechnol 47:625–629CrossRefPubMedGoogle Scholar
  8. 8.
    Boulton R, Singleton V, Bisson L, Kunkee R (1998) Principles and practices of winemaking. Chapman & Hall, New YorkGoogle Scholar
  9. 9.
    Corbin KR, Hsieh YSY, Betts NS, Byrt CS, Henderson M, Stork J, DeBolt S, Fincher GB, Burton RA (2015) Grape marc as a source of carbohydrates for bioethanol: chemical composition, pre-treatment and saccharification. Biores Technol 193:76–83. doi: 10.1016/j.biortech.2015.06.030 CrossRefGoogle Scholar
  10. 10.
    Corbin KR, Byrt CS, Bauer S, DeBolt S, Chambers D, Holtum JA, Karem G, Henderson M, Lahnstein J, Beahan CT (2015) Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS One 10(8):e0135382CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    ARS (NRRL) Culture Collection (2015) Last accessed 5 May 2015
  12. 12.
    Frayne R (1986) Direct analysis of the major organic components in grape must and wine using high performance liquid chromatography. Am J Enol Vitic 37:281–287Google Scholar
  13. 13.
    Nobel PS, Valenzuela AG (1987) Environmental responses and productivity of the CAM plant, Agave tequilana. Agr For Meteorol 39:319–334. doi: 10.1016/0168-1923(87)90024-4 CrossRefGoogle Scholar
  14. 14.
    Palmqvist E, Grage H, Meinander NQ, Hahn-Haegerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55. doi: 10.1002/(SICI)1097-0290(19990405)63:1 CrossRefPubMedGoogle Scholar
  15. 15.
    Cáceres-Farfán M, Lappe P, Larqué-Saavedra A, Magdub-Méndez A, Barahona-Pérez L (2008) Ethanol production from henequen (Agave fourcroydes Lem.) juice and molasses by a mixture of two yeasts. Biores Technol 99:9036–9039. doi: 10.1016/j.biortech.2008.04.063 CrossRefGoogle Scholar
  16. 16.
    Díaz-Montaño DM, Délia ML, Estarrón-Espinosa M, Strehaiano P (2008) Fermentative capability and aroma compound production by yeast strains isolated from Agave tequilana Weber juice. Enz Microb Technol 42:608–616. doi: 10.1016/j.enzmictec.2007.12.007 CrossRefGoogle Scholar
  17. 17.
    Díaz‐Montaño DM, Favela‐Torres E, Cordova J (2010) Improvement of growth, fermentative efficiency and ethanol tolerance of Kloeckera africana during the fermentation of Agave tequilana juice by addition of yeast extract. J Sci Food Agric 90(2):321–328CrossRefPubMedGoogle Scholar
  18. 18.
    Martínez-Torres J, Barahona-Perez F, Lappe-Oliveras P, Colunga Garcia-Marin P, Magdub-Mendez A, Vergara-Yoisura S, Largue-Saavedra A (2011) Ethanol production from two varieties of henequen (Agave fourcroydes Lem). GCB Bioenergy 3(1):37–42CrossRefGoogle Scholar
  19. 19.
    Waleckx E, Gschaedler A, Colonna-Ceccaldi B, Monsan P (2008) Hydrolysis of fructans from Agave tequilana Weber var. azul during the cooking step in a traditional tequila elaboration process. Food Chem 108:40–48. doi: 10.1016/j.foodchem.2007.10.028 CrossRefGoogle Scholar
  20. 20.
    Villegas-Silva PA, Toledano-Thompson T, Canto-Canché BB, Larqué-Saavedra A, Barahona-Pérez LF (2014) Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol 14:14. doi: 10.1186/1472-6750-14-14 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nguyen S, Sophonputtanaphoca S, Kim E, Penner M (2009) Hydrolytic methods for the quantification of fructose equivalents in herbaceous biomass. Appl Biochem Biotechnol 158:352–361. doi: 10.1007/s12010-009-8596-x CrossRefPubMedGoogle Scholar
  22. 22.
    López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J (2012) Ethanol yield and volatile compound content in fermentation of Agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J Biosci Bioeng 113:614–618. doi: 10.1016/j.jbiosc.2011.12.015 CrossRefPubMedGoogle Scholar
  23. 23.
    Verdugo Valdez A, Segura Garcia L, Kirchmayr M, Ramírez Rodríguez P, González Esquinca A, Coria R, Gschaedler Mathis A (2011) Yeast communities associated with artisanal mezcal fermentations from Agave salmiana. Ant Van Leeuw 100:497–506. doi: 10.1007/s10482-011-9605-y CrossRefGoogle Scholar
  24. 24.
    Lachance MA (1995) Yeast communities in a natural tequila fermentation. Ant Van Leeuw 68:151–160CrossRefGoogle Scholar
  25. 25.
    Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I (2008) Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int J Food Microbiol 125:197–203. doi: 10.1016/j.ijfoodmicro.2008.04.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Estrada-Godina AR, Cruz-Guerrero AE, Lappe P, Ulloa M, García-Garibay M, Gómez-Ruiz L (2001) Isolation and identification of killer yeasts from Agave sap (aguamiel) and pulque. World J Microb Biotechnol 17:557–560CrossRefGoogle Scholar
  27. 27.
    Marquina D, Peres C, Caldas FV, Marques JF, Peinado JM, Spencer-Martins I (1992) Characterization of the yeast population in olive brines. Lett Appl Microbiol 14:279–283. doi: 10.1111/j.1472-765X.1992.tb00705.x CrossRefGoogle Scholar
  28. 28.
    Morais PB, Rosa CA, Linardi VR, Pataro C, Maia ABRA (1997) Short communication: Characterization and succession of yeast populations associated with spontaneous fermentations during the production of Brazilian sugar-cane aguardente. World J Microbiol Biotechnol 13:241–243CrossRefGoogle Scholar
  29. 29.
    Shrestha P, Ibáñez AB, Bauer S, Glassman SI, Szaro TM, Bruns TD, Taylor JW (2015) Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnol Biofuels 8(1):1CrossRefGoogle Scholar
  30. 30.
    CBS-KNAW Fungal Biodiversity Centre (2015) Last accessed 22 April 2015
  31. 31.
    Arrizon J, Morel S, Gschaedler A, Monsan P (2012) Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal. Bioresour Technol 110:560–565. doi: 10.1016/j.biortech.2012.01.112 CrossRefPubMedGoogle Scholar
  32. 32.
    Amaya-Delgado L, Herrera-López EJ, Arrizon J, Arellano-Plaza M, Gschaedler A (2013) Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation. World J Microb Biotechnol 29:875–881. doi: 10.1007/s11274-012-1242-8 CrossRefGoogle Scholar
  33. 33.
    Garcia-Moya E, Romero-Manzanares A, Nobel PS (2011) Highlights for Agave productivity. GCB Bioenergy 3:4–14. doi: 10.1111/j.1757-1707.2010.01078.x CrossRefGoogle Scholar
  34. 34.
    Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Cur Opin Microbiol 7:492–498. doi: 10.1016/j.mib.2004.08.002 CrossRefGoogle Scholar
  35. 35.
    Aguilar-Uscanga B, Arrizon J, Ramirez J, Solis-Pacheco J (2007) Effect of Agave tequilana juice on cell wall polysaccharides of three Saccharomyces cerevisiae strains from different origins. Ant van Leeuw 91:151–157. doi: 10.1007/s10482-006-9106-6 CrossRefGoogle Scholar
  36. 36.
    Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS (2004) Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yst Res 4:683–689. doi: 10.1016/j.femsyr.2004.02.005 CrossRefGoogle Scholar
  37. 37.
    Flood AE, Johns MR, White ET (1996) Mutarotation of D-fructose in aqueous-ethanolic solutions and its influence on crystallisation. Carbohydr Res 288:45–56. doi: 10.1016/S0008-6215(96)90775-2 Google Scholar
  38. 38.
    Arrizon J, Fiore C, Acosta G, Romano P, Gschaedler A (2006) Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations. Ant Van Leeuw 89:181–189. doi: 10.1007/s10482-005-9022-1 CrossRefGoogle Scholar
  39. 39.
    Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119Google Scholar
  40. 40.
    Shrestha P, Ibáñez A, Bauer S, Glassman S, Szaro TM, Bruns TD, Taylor JW (2015) Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnol Biofuels 8:38. doi: 10.1186/s13068-015-0221-3 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mielenz JR, Rodriguez M, Thompson OA, Yang X, Yin H (2015) Development of Agave as a dedicated biomass source: production of biofuels from whole plants. Biotechnol Biofuels 8(1):1CrossRefGoogle Scholar
  42. 42.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792. doi: 10.1126/science.1189268 CrossRefPubMedGoogle Scholar
  43. 43.
    Valle-Rodríguez J, Hernández-Cortés G, Córdova J, Estarrón-Espinosa M, Díaz-Montaño D (2012) Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations. Ant Van Leeuw 101:195–204. doi: 10.1007/s10482-011-9622-x CrossRefGoogle Scholar
  44. 44.
    Hernández‐Cortés G, Córdova‐López JA, Herrera‐López EJ, Morán‐Marroquín GA, Valle‐Rodríguez JO, Díaz‐Montaño DM (2010) Effect of pH, aeration and feeding non‐sterilized Agave juice in a continuous Agave juice fermentation. J Sci Food Agr 90:1423–1428. doi: 10.1002/jsfa.3957 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kendall R. Corbin
    • 1
  • Natalie S. Betts
    • 1
  • Nick van Holst
    • 2
  • Vladimir Jiranek
    • 2
  • Don Chambers
    • 3
  • Caitlin S. Byrt
    • 4
  • Geoffrey B. Fincher
    • 1
  • Rachel A. Burton
    • 1
    Email author
  1. 1.The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  2. 2.School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  3. 3.AusAgaveAldgateAustralia
  4. 4.The Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations