Advertisement

BioEnergy Research

, Volume 9, Issue 4, pp 1109–1125 | Cite as

Maximum Annual Potential Yields of Salix miyabeana SX67 in Southern Quebec and Effects of Coppicing and Stool Age

  • Mario Fontana
  • Benoit Lafleur
  • Michel Labrecque
  • François Courchesne
  • Nicolas Bélanger
Article

Abstract

Aboveground biomass yields of short rotation cultures (SRC) of willow can vary substantially depending on site quality. Among others, aboveground biomass yields depend on climatic conditions, soil properties, age of the SRC, and number of harvesting cycles. In this study, we investigated the effects of coppicing on growth variables (i.e., largest basal stem, height, and aboveground biomass) at ten SRC of Salix miyabeana SX67 established on various soils in southern Quebec. More than 1100 shrubs with stool ages varying between 1 and 15 years were measured. Strain analysis was carried out to calculate past annual aboveground productivities, and maximum annual yield potential was quantified at each site. Annual growth rates were highly variable and depended on site and coppicing history. To achieve optimal stool development and aboveground yields, two to three growing seasons following coppicing were necessary for sandy and clayey sites, respectively. The delays for reaching maximum yields were shortened when soil cation exchange capacity was dramatically low and were prolonged when soil was physically restricting stool development. This lag influenced the total yield of the first rotation and also modulated the magnitude of the increase of aboveground biomass that is generally observed in the second rotation. To increase yields in southern Quebec, our results suggest that it is preferable to extend the length of the first rotation instead of coppicing at the end of the first growing season after establishment.

Keywords

Willow Short rotation culture Fast growth Soil texture Coppicing Root system age 

Notes

Acknowledgments

Financial support for this project was provided by the Fonds de recherche du QuébecNature et technologiesProgramme de recherche en partenariat contribuant à la réduction et à la séquestration des gaz à effet de serre (2011-GZ-138839) to N. Bélanger. We gratefully thank Florence Bélanger, Carol Bouchard, Simon Constantineau, Nicola Fontana, Alexandre Fouillet, Fanny Gagné, Claude Labrecque, Julien Mourali, Jean Teodorescu, Jacinthe Ricard-piché, Marie-Claude Turmel, and Gilbert Tremblay for their help in the field and laboratory, and Daniel Lesieur for his support with dendrochronological analysis. We also thank Francis Allard, Roger Chamard, Alice Chagnon, Jean-François Lavoie, Alain Guay, and staff from the Centre de recherche sur les grains (CEROM) for giving us access to the SRCs of willow used in this study. Finally, we thank Olivier Lalonde from CEROM for providing soil samples and growth data for the ALB site.

References

  1. 1.
    Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411–418. doi: 10.1890/1540-9295(2004)002[0411:GFASAO]2.0.CO;2 CrossRefGoogle Scholar
  2. 2.
    Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179(1):15–32CrossRefPubMedGoogle Scholar
  3. 3.
    Guidi Nissim W, Pitre FE, Teodorescu TI, Labrecque M (2013) Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 56(0):361–369. doi: 10.1016/j.biombioe.2013.05.020 CrossRefGoogle Scholar
  4. 4.
    Weih M, Nordh NE (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23(6):397–413. doi: 10.1016/S0961-9534(02)00067-3 CrossRefGoogle Scholar
  5. 5.
    Labrecque M, Teodorescu TI, Daigle S (1998) Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristics. Can J For Res 28:1621–1635CrossRefGoogle Scholar
  6. 6.
    Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35(10):4165–4173, doi: 10.1016/j.biombioe.2011.06.037
  7. 7.
    Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T (2006) Fate of heavy metals after application of sewage sludge and wood–ash mixtures to short-rotation willow coppice. Environ Pollut 142(1):160–169. doi: 10.1016/j.envpol.2005.09.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Christersson L (1986) High technology biomass production by Salix clones on a sandy soil in southern Sweden. Tree Physiol 2 (1-2-3):261–272. doi: 10.1093/treephys/2.1-2-3.261
  9. 9.
    Labrecque M, Teodorescu IT (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25:135–146CrossRefGoogle Scholar
  10. 10.
    Verwijst T (1996) Cyclic and progressive changes in short-rotation willow coppice systems. Biomass Bioenergy 11(2–3):161–165. doi: 10.1016/0961-9534(96)00016-5 CrossRefGoogle Scholar
  11. 11.
    Bergkvist P, Ledin S (1998) Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass Bioenergy 14(2):149–156. doi: 10.1016/S0961-9534(97)10021-6 CrossRefGoogle Scholar
  12. 12.
    Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 32(12):1227–1234. doi: 10.1016/j.biombioe.2008.02.023 CrossRefGoogle Scholar
  13. 13.
    Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29(1):1–9. doi: 10.1016/j.biombioe.2004.12.004 CrossRefGoogle Scholar
  14. 14.
    Toillon J, Rollin B, Dallé E, Feinard-Duranceau MI, Bastien JC, Brignolas F, Marron N (2013) Variability and plasticity of productivity, water-use efficiency, and nitrogen exportation rate in Salix short rotation coppice. Biomass Bioenergy 56(0):392–404. doi: 10.1016/j.biombioe.2013.05.017 CrossRefGoogle Scholar
  15. 15.
    Tahvanainen L, Rytkönen VM (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenergy 16(2):103–117. doi: 10.1016/S0961-9534(98)00074-9 CrossRefGoogle Scholar
  16. 16.
    Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39(2):154–160. doi: 10.1007/s002440010091 CrossRefPubMedGoogle Scholar
  17. 17.
    Heinsoo K, Merilo E, Petrovits M, Koppel A (2009) Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Est J Ecol 58(1):27–37CrossRefGoogle Scholar
  18. 18.
    Ens J, Farrell RE, Bélanger N (2013) Effects of edaphic conditions on site quality for Salix purpurea ‘Hotel’ plantations across a large climatic gradient in Canada. New For 1–20. doi: 10.1007/s11056-013-9384-6
  19. 19.
    Moukoumi J, Farrell R, Van Rees K, Hynes RK, Bélanger N (2012) Intercropping Caragana arborescens with Salix miyabeana to satisfy nitrogen demand and maximize growth. Bioenerg Res 5(3):719–732. doi: 10.1007/s12155-012-9181-7 CrossRefGoogle Scholar
  20. 20.
    Sannervik AN, Eckersten H, Verwijst T, Kowalik P, Nordh NE (2006) Simulation of willow productivity based on radiation use efficiency, shoot mortality and shoot age. Eur J Agron 24(2):156–164. doi: 10.1016/j.eja.2005.07.007 CrossRefGoogle Scholar
  21. 21.
    Price PW, Clancy KM (1986) Multiple effects of precipitation on Salix lasiolepis and populations of the stem-galling sawfly, Euura lasiolepis. Ecol Res 1(1):1–14. doi: 10.1007/BF02361200 CrossRefGoogle Scholar
  22. 22.
    Guidi W, Labrecque M (2010) Effects of high water supply on growth, water use, and nutrient allocation in willow and poplar grown in a 1-year pot trial. Water Air Soil Pollut 207(1–4):85–101. doi: 10.1007/s11270-009-0121-x CrossRefGoogle Scholar
  23. 23.
    Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837. doi: 10.1016/j.biombioe.2008.01.002 CrossRefGoogle Scholar
  24. 24.
    Volk T, Abrahamson L, Cameron K, Castellano P, Corbin T, Fabio E, Johnson G, Kuzovkina-Eischen Y, Labrecque M, Miller R (2011) Yields of willow biomass crops across a range of sites in North America. Asp Appl Biol 112:67–74Google Scholar
  25. 25.
    Berhongaray G, Verlinden MS, Broeckx LS, Ceulemans R (2015) Changes in belowground biomass after coppice in two Populus genotypes. For Ecol Manag 337(0):1–10. doi: 10.1016/j.foreco.2014.10.035 CrossRefGoogle Scholar
  26. 26.
    Guidi W, Pitre FE, Labrecque M (2013) Chapter 17 Short-rotation coppice of willows for the production of biomass in eastern Canada. In: Miodrag Darko M (ed) Biomass Now - Sustainable Growth and Use, pp 421–448. ISBN 978-953-51-1105-4Google Scholar
  27. 27.
    Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26(6):497–505. doi: 10.1016/j.biombioe.2003.09.002 CrossRefGoogle Scholar
  28. 28.
    Abrahamson LP, Volk TA, Kopp RF, White EH, Ballard JL (2002) Willow biomass producer’s handbook. SUNY-ESF, New-yorkGoogle Scholar
  29. 29.
    Labrecque M, Teodorescu TI (2001) Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For Ecol Manag 150(3):223–239. doi: 10.1016/S0378-1127(00)00567-3 CrossRefGoogle Scholar
  30. 30.
    Brown JK (1976) Estimating shrub biomass from basal stem diameters. Can J For Res 6(2):153–158. doi: 10.1139/x76-019 CrossRefGoogle Scholar
  31. 31.
    Telenius B, Verwijst T (1995) The influence of allometric variation, vertical biomass distribution and sampling procedure on biomass estimates in commercial short-rotation forests. Bioresour Technol 51(2–3):247–253. doi: 10.1016/0960-8524(94)00133-L CrossRefGoogle Scholar
  32. 32.
    Carmean WH (1975) Adv Agron. In: Brady NC (ed) Forest site quality evaluation in the United States. Academic, USA, pp 209–269. doi: 10.1016/S0065-2113(08)70011-7, l Volume 27Google Scholar
  33. 33.
    Perron J-Y, Fortin M, Ung C-H, Morin P, Blais L, Carpentier J-P, Cloutier J, Del Degan B, Demers D, Gagnon R, Le´tourneau J-P, Richard Y (2009) Ouvrage collectif Ordre des ingénieurs forestiers du Québec, Manuel de foresterie. In: Dendrometrie et inventaire forestier, 2nd edn. Éditions MultiMondes, Québec, pp 567–630Google Scholar
  34. 34.
    Rabenhorst MC (1988) Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Sci Soc Am J 52(4):965–968. doi: 10.2136/sssaj1988.03615995005200040012x CrossRefGoogle Scholar
  35. 35.
    Hendershort WH, Lalande H, Duquette M (2007) Chapter 18 Ion exchange and exchangeable. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 197–206Google Scholar
  36. 36.
    Rubino DL, McMarthy BC (2000) Dendroclimatological analysis of white oak (Quercus alba L. Fagaceae) from an old-growth forest of southeastern Ohio, USA. J Torrey Bot Soc 127:240–250Google Scholar
  37. 37.
    Johnson SE, and Abrams, M.D. (2009) Basal area increment trends across age classes for two long-lived tree species in the eastern U.S. Tree Rings in Archaeology, Climatology and Ecology, Vol 7 GFZ Potsdam, Scientific Technical Report STR 09/03, Potsdam, pp 226Google Scholar
  38. 38.
    von Fircks Y, Ericsson T, Sennerby-Forsse L (2001) Seasonal variation of macronutrients in leaves, stems and roots of Salix dasyclados Wimm. grown at two nutrient levels. Biomass Bioenergy 21(5):321–334. doi: 10.1016/S0961-9534(01)00045-9 CrossRefGoogle Scholar
  39. 39.
    Kopp RF, Abrahamson LP, White EH, Volk TA, Nowak CA, Fillhart RC (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenergy 20(1):1–7. doi: 10.1016/S0961-9534(00)00063-5 CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625. doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 CrossRefPubMedGoogle Scholar
  42. 42.
    Arevalo CBM, Volk TA, Bevilacqua E, Abrahamson L (2007) Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenergy 31(1):1–12. doi: 10.1016/j.biombioe.2006.06.012 CrossRefGoogle Scholar
  43. 43.
    Nordh NE, Verwijst T (2004) Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice—a comparison between destructive and non-destructive methods. Biomass Bioenergy 27(1):1–8. doi: 10.1016/j.biombioe.2003.10.007 CrossRefGoogle Scholar
  44. 44.
    Heinsoo K, Sild E, Koppel A (2002) Estimation of shoot biomass productivity in Estonian Salix plantations. For Ecol Manag 170(1–3):67–74. doi: 10.1016/S0378-1127(01)00784-8 CrossRefGoogle Scholar
  45. 45.
    Hangs RD, Van Rees KCJ, Schoenau JJ, Guo X (2011) A simple technique for estimating above-ground biomass in short-rotation willow plantations. Biomass Bioenergy 35(5):2156–2162. doi: 10.1016/j.biombioe.2011.02.008 CrossRefGoogle Scholar
  46. 46.
    Ens JA, Farrell RE, Bélanger N (2009) Rapid biomass estimation using optical stem density of willow (Salix spp.) grown in short rotation. Biomass Bioenergy 33(2):174–179. doi: 10.1016/j.biombioe.2008.05.012 CrossRefGoogle Scholar
  47. 47.
    Amichev BY, Hangs RD, Van Rees KCJ (2011) A novel approach to simulate growth of multi-stem willow in bioenergy production systems with a simple process-based model (3PG). Biomass Bioenergy 35(1):473–488. doi: 10.1016/j.biombioe.2010.09.007 CrossRefGoogle Scholar
  48. 48.
    Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79(1):79–93. doi: 10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2 CrossRefGoogle Scholar
  49. 49.
    Verwijst T, Nordh N-E (1992) Non-destructive estimation of biomass of Salix dasyclados. Bioresour Technol 41(1):59–63. doi: 10.1016/0960-8524(92)90099-J CrossRefGoogle Scholar
  50. 50.
    Sevel L, Nord-Larsen T, Raulund-Rasmussen K (2012) Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenergy 46:664–672. doi: 10.1016/j.biombioe.2012.06.030 CrossRefGoogle Scholar
  51. 51.
    Szczukowski S, Tworkowski J, Klasa A, Stolarski M (2002) Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostl Vyroba 48(9):413–419Google Scholar
  52. 52.
    Adler A, Verwijst T, Aronsson P (2005) Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 29(2):102–113. doi: 10.1016/j.biombioe.2005.04.003 CrossRefGoogle Scholar
  53. 53.
    Von Fircks Y, Sennerby-Forsse L (1998) Seasonal fluctuations of starch in root and stem tissues of coppiced Salix viminalis plants grown under two nitrogen regimes. Tree Physiol 18(4):243–249. doi: 10.1093/treephys/18.4.243 CrossRefGoogle Scholar
  54. 54.
    Verwijst T (1991) Shoot mortality and dynamics of live and dead biomass in a stand of Salix viminalis. Biomass Bioenergy 1(1):35–39. doi: 10.1016/0961-9534(91)90049-I CrossRefGoogle Scholar
  55. 55.
    Sage R (1999) Weed competition in willow coppice crops: the cause and extent of yield losses. Weed Res 39(5):399–412CrossRefGoogle Scholar
  56. 56.
    Salomón R, Valbuena-Carabaña M, Gil L, González-Doncel I (2013) Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: bigger is less vigorous. For Ecol Manag 296:108–118CrossRefGoogle Scholar
  57. 57.
    Kopp RF, White EH, Abrahamson LP, Nowak CA, Zsuffa L, Burns KF (1993) Willow biomass trials in Central New York State. Biomass Bioenergy 5(2):179–187. doi: 10.1016/0961-9534(93)90099-P CrossRefGoogle Scholar
  58. 58.
    Lindegaard KN, Parfitt, R.i., Donaldson, G., Hunter, T (2001) Comparative trials of elite Swedish and UK biomass willow varieties. Asp Appl Biol 65 (Biomass and Energy Crops II)Google Scholar
  59. 59.
    Nordh NE (2005) Long term changes in stand structure and biomass production in short rotation willow coppice, vol 2005, vol 120Google Scholar
  60. 60.
    Larsen SU, Jørgensen U, Kjeldsen JB, Lærke PE (2014) Long-term yield effects of establishment method and weed control in willow for short rotation coppice (SRC). Biomass Bioenergy 71:266–274. doi: 10.1016/j.biombioe.2014.10.001 CrossRefGoogle Scholar
  61. 61.
    Quaye AK, Volk TA (2011) Soil nutrient dynamics and biomass production in an organic and inorganic fertilized short rotation willow coppice system. Asp Appl Biol 112:121–129Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mario Fontana
    • 1
    • 2
  • Benoit Lafleur
    • 1
  • Michel Labrecque
    • 2
  • François Courchesne
    • 3
  • Nicolas Bélanger
    • 1
    • 4
  1. 1.Centre d’étude de la forêtUniversité du Québec à MontréalMontréalCanada
  2. 2.Institut de recherche en biologie végétale, Jardin botanique de MontréalMontréalCanada
  3. 3.Département de géographieUniversité de MontréalMontréalCanada
  4. 4.Département science et technologie, TéluqUniversité du QuébecMontréalCanada

Personalised recommendations