BioEnergy Research

, Volume 9, Issue 3, pp 798–808 | Cite as

Optimization of Biomass and Compost Management to Sustain Soil Organic Matter in Energy Cane Cropping Systems in a Tropical Polluted Soil: a Modelling Study

  • J. Sierra
  • J. L. Chopart
  • L. Guindé
  • J. M. Blazy
Article

Abstract

In French West Indies, the high dependency of the electricity mix on imported fossil fuels has led local authorities to propose the conversion of some land to the production of energy cane. This conversion mainly concerns land polluted by the pesticide chlordecone, where most crops for human consumption have been banned. This molecule has a strong affinity for soil organic matter (SOM). The aims of this study were to assess the impact of crop residue management and compost application on the stocks of SOM and chlordecone in soils cultivated with energy cane and to determine the minimum SOM input required to maintain SOM stocks. A field experiment was conducted to determine the yield and biomass partitioning of energy cane, and laboratory incubations were performed to estimate humification from crop residues. Changes in SOM and chlordecone stocks over a 30-year period were investigated using models already calibrated for the land under study. Non-harvestable biomass left on the field (tops, litterfall and roots) covered >60 % of SOM mineralization. A full offset of mineralization required the return of 10 % of harvestable biomass or the application of compost at a rate of 40 Mg ha−1 every 5 years. With the total removal of harvestable biomass and without compost applications, SOM and chlordecone losses increased by 23 and 13 %, respectively, which was associated with high SOM mineralization and chlordecone leaching under tropical climate. The estimated break-even price for cane biomass indicated that compost application would be more profitable for farmers than the return of a part of the harvestable biomass.

Keywords

Biomass Chlordecone Compost Energy cane Soil organic matter Tropics 

References

  1. 1.
    Organization of American States (2012) Energy policy and sector analysis in the Caribbean 2010–2011. http://www.ecpamericas.org/data/files/Initiatives/lccc_caribbean/LCCC_Report_Final_May2012.pdf. Accessed 23 September 2015
  2. 2.
    de Cuba K, Rivera-Ramírez M (2007) Background discussion paper on bio-energy potential for St. Kitts and Nevis. Global Sustainable Energy Islands Initiative. http://www.oas.org/dsd/reia/documents/gseii/stkittsnevis/background_discussion_paper_final_oas_gseii.pdf. Accessed 23 September 2015
  3. 3.
    Conseil Regional de la Guadeloupe (2010) Valorisation énergétique de la biomasse en Guadeloupe: état des lieux et perspectives. http://www.guadeloupe-energie.gp/wp-content/uploads/2010-10-01_Biomasse_Etat-des-lieux.pdf. Accessed 10 September 2015
  4. 4.
    Matsuoka S, Kennedy AJ, dos Santos EGD, Tomazela AL, Rubio LCS (2014) Energy cane: its concept, development, characteristics, and prospects. Advances in Botany. doi:10.1155/2014/597275 Google Scholar
  5. 5.
    Sabatier D, Martin JF, Chiroleu F, Roussel C, Letourmy P, Van Antwerpen R, Gabrielle B, Ney B (2015) Optimization of sugarcane farming as a multipurpose crop for energy and food production. Glob Change Biol Bioenergy 7:40–56CrossRefGoogle Scholar
  6. 6.
    Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J (2009) Long-term pollution by chlordecone of tropical volcanic soils in the french West Indies: a simple leaching model accounts for current residue. Environ Pollut 157:1697–1705CrossRefPubMedGoogle Scholar
  7. 7.
    Saunders L, Kadhel P, Costet N, Rouget F, Monfort C, Thomé JP, Guldner L, Cordier S, Multigner L (2014) Hypertensive disorders of pregnancy and gestational diabetes mellitus among French Caribbean women chronically exposed to chlordecone. Environ Int 68:171–176CrossRefPubMedGoogle Scholar
  8. 8.
    Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of harvested organs in root crops grown on chlordecone-polluted soils. Pedosphere 22:562–571CrossRefGoogle Scholar
  9. 9.
    Gillingham KT, Smith SJ, Sands RD (2007) Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-007-9122-5 Google Scholar
  10. 10.
    Immerzeel D, Verweij PA, Van der Hilst F, Faaij APC (2014) Biodiversity impacts of bioenergy crop production: a state-of-the-art review. Glob Change Biol Bioenergy 6:183–209CrossRefGoogle Scholar
  11. 11.
    Saffih-Hdadi K, Mary B (2008) Modeling consequences of straw residues export on soil organic carbon. Soil Biol Biochem 40:594–607CrossRefGoogle Scholar
  12. 12.
    Blanco-Canqui H (2013) Crop residue removal for bioenergy reduces soil carbon pools: how can we offset carbon losses? Bioenerg Res 6:358–371CrossRefGoogle Scholar
  13. 13.
    Smith P, Davies CA, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey RM, McNamara NP, Powlson D, Cowie A, Van Noordwijk M, Davis SC, Richter DB, Kryzanowski L, Van Wijk MT, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya TK, Braimoh A (2012) Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob Chang Biol 18:2089–2101CrossRefGoogle Scholar
  14. 14.
    Turmel MS, Speratti A, Baudron F, Verhulst N, Govaerts B (2015) Crop residue management and soil health: a systems analysis. Agric Syst 134:6–16CrossRefGoogle Scholar
  15. 15.
    Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan G, Mander Ü, Monti A, Djomo SN, Valentine J, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Change Biol Bioenergy 4:372–391CrossRefGoogle Scholar
  16. 16.
    Sierra J, Causeret F, Diman JL, Publicol M, Desfontaines L, Cavalier A, Chopin P (2015) Observed and predicted changes in soil carbon stocks under export and diversified agriculture in the Caribbean. The case study of Guadeloupe. Agric Ecosyst Environ 213:252–264CrossRefGoogle Scholar
  17. 17.
    Monforti F, Lugato E, Motola V, Bodis K, Scarlat N, Dallemand JF (2015) Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe. Renew Sust Energ Rev 44:519–529CrossRefGoogle Scholar
  18. 18.
    Kludze H, Deen B, Weersink A, van Acker R, Janovicek K, De Laporte A, McDonald I (2013) Estimating sustainable crop residue removal rates and costs based on soil organic matter dynamics and rotational complexity. Biomass Bioenergy 56:607–618CrossRefGoogle Scholar
  19. 19.
    Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH (2009) Changes in soil organic carbon under biofuel crops. Glob Change Biol Bioenergy 1:75–96CrossRefGoogle Scholar
  20. 20.
    Mello FFC, Cerri CEP, Davies CA, Holbrook NM, Paustian K, Maia SMF, Galdos MV, Bernoux M, Cerri CC (2014) Payback time for soil carbon and sugar-cane ethanol. Nat Clim Chang 4:605–609CrossRefGoogle Scholar
  21. 21.
    Chopart JL, Bachelier B (2012) Propriétés et performances comparées de 16 cultivars de Poacées (Saccharum sp. et Erianthus) en vue d’un usage énergétique. Proc. Congrès AFCAS ARTAS, La Réunion, France. https://agritrop.cirad.fr/566633. Accessed 21 September 2015
  22. 22.
    Chopart JL, Bonnal L, Martiné JF, Sabatier D (2013) Functional relationships between dry above-ground biomass and the energy yield of sugarcane. Proc. of the XXVIII International Society of Sugar Cane Technologists Congress, São Paulo, Brazil, https://agritrop.cirad.fr/570786. Accessed 21 September 2015Google Scholar
  23. 23.
    Yannick B, Dagallier JC, Ganot P, Mathieu C, Mounigan B, Urbino A, Wagner N (2005) Manuel technique de la canne à sucre. CTICS, Abymes, GuadeloupeGoogle Scholar
  24. 24.
    Böhm W (1979) Monolith methods. Ecol Stu An 33:20–38CrossRefGoogle Scholar
  25. 25.
    Azevedo M, Chopart JL, Medina de Conti C (2011) Sugarcane root length density and distribution from root intersection counting on a trench-profile. Sci Agric 68:94–101CrossRefGoogle Scholar
  26. 26.
    Sierra J, Motisi N (2012) Shift in C and N humification during legume litter decomposition in an acid tropical Ferralsol. Soil Res 50:380–389CrossRefGoogle Scholar
  27. 27.
    Nicolardot B, Recous S, Mary B (2001) Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 238:83–103CrossRefGoogle Scholar
  28. 28.
    Raphael L, Sierra J, Recous S, Ozier-Lafontaine H, Desfontaines L (2012) Soil turnover of crop residues from the banana (Musa AAA cv. Petite-Naine) mother plant and simultaneous uptake by the daughter plant of released nitrogen. Eur J Agron 38:117–123CrossRefGoogle Scholar
  29. 29.
    Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53:105–119CrossRefPubMedGoogle Scholar
  30. 30.
    Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192CrossRefGoogle Scholar
  31. 31.
    Corbeels M, McMurtrie RE, Pepper DA, O’Connell AM (2005) A process-based model of nitrogen cycling in forest plantations. Part I. Structure, calibration and analysis of the decomposition model. Ecol Model 187:426–448CrossRefGoogle Scholar
  32. 32.
    Justes E, Mary B, Nicolardot B (2009) Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: parameterization of the residue decomposition module of STICS model for mature and non mature residues. Plant Soil 325:171–185CrossRefGoogle Scholar
  33. 33.
    Pikul JL, Johnson JMF, Schumacher TE, Vigil M, Riedell WE (2008) Change in surface soil carbon under rotated corn in eastern South Dakota. Soil Sci Soc Am J 72:1738–1744CrossRefGoogle Scholar
  34. 34.
    Tarkalson DD, Bjorneberg DL, Brown B, Kok H, Bjorneberg DL (2011) Small grain residue management effects on soil organic carbon: a literature review. Agron J 103:247–252CrossRefGoogle Scholar
  35. 35.
    Fernández-Bayo JD, Saison C, Voltz M, Disko U, Hofmann D, Berns AE (2013) Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci Total Environ 463–464:395–403CrossRefPubMedGoogle Scholar
  36. 36.
    Merlin C, Devers M, Crouzet O, Heraud C, Steinberg C, Mougin C, Martin-Laurent F (2014) Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies. Environ Sci Pollut Res 21:4914–4927CrossRefGoogle Scholar
  37. 37.
    Ministère de la Santé et des Affaires Sociales (2011) Plan d’action contre la pollution par la chlordécone en Guadeloupe et en Martinique 2011–2013. http://www.sante.gouv.fr/plan-d-action-chlordecone-en-martinique-et-en-guadeloupe-2008-2010.html. Accessed 9 September 2015
  38. 38.
    Clostre F, Woignier T, Rangon L, Fernandes P, Soler A, Lesueur-Jannoyer M (2014) Field validation of chlordecone soil sequestration by organic matter addition. J Soils Sediments 14:23–33CrossRefGoogle Scholar
  39. 39.
    Parkinson R, Gibbs P, Burchett S, Misselbrook T (2004) Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresour Technol 91:171–178CrossRefPubMedGoogle Scholar
  40. 40.
    Sierra J, Desfontaines L, Faverial J, Loranger-Merciris G, Boval M (2013) Composting and vermicomposting of cattle manure and greenwastes under tropical conditions: carbon and nutrient balances and end-product quality. Soil Res 51:142–151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Sierra
    • 1
  • J. L. Chopart
    • 2
  • L. Guindé
    • 1
  • J. M. Blazy
    • 1
  1. 1.INRA, UR1321 ASTRO Agrosystèmes TropicauxPetit-BourgFrance
  2. 2.CIRAD, UPR AIDA, Station de RoujolPetit-BourgFrance

Personalised recommendations