Advertisement

BioEnergy Research

, Volume 9, Issue 2, pp 399–411 | Cite as

Dedicated Herbaceous Biomass Feedstock Genetics and Development

  • W. F. AndersonEmail author
  • G. Sarath
  • S. Edme
  • M. D. Casler
  • R. B. Mitchell
  • C. M. Tobias
  • A. L. Hale
  • S. E. Sattler
  • J. E. Knoll
Article

Abstract

Biofuels and bio-based products can be produced from a wide variety of herbaceous feedstocks. To supply enough biomass to meet the needs of a new bio-based economy, a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the USA. Researchers from the US Department of Agriculture’s Agricultural Research Service (USDA-ARS) and collaborators associated with the USDA Regional Biomass Research Centers have made major progress in understanding the genetics of switchgrass, sorghum, and other grass species and have begun to use this knowledge to develop new cultivars with high yields and appropriate traits for efficient conversion to bio-based products. Plant geneticists and breeders have discovered genes that reduce recalcitrance for biochemical conversion to ethanol and drop-in fuels. Progress has also been made in finding genes that improve production under biotic and abiotic stress from diseases, pests, and climatic variations.

Keywords

Warm-season grasses Switchgrass Bioenergy Energycane Napiergrass Sorghum 

References

  1. 1.
    Anderson WF, Peterson J, Akin DE, Morrison WH III (2005) Enzyme pretreatment of grass lignocellulose for potential high-value co-products and an improved fermentable substrate. Appl Biochem Biotechnol 121–124:303–310PubMedGoogle Scholar
  2. 2.
    Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366PubMedGoogle Scholar
  3. 3.
    Anderson WF, Dien BS, Brandon SK, Peterson JD (2008) Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Appl Biochem Biotechnol 14:13–21Google Scholar
  4. 4.
    Anderson WF, Dien BS, Jung HG, Vogel K, Weimer PJ (2010) Effects of forage quality and cell wall constituents of bermudagrass on biochemical conversion to ethanol. Bioenerg Res 3:225–237Google Scholar
  5. 5.
    Bayer W (1990) Napier grass—a promising fodder for smallholder livestock production in the tropics. Plant Res Dev 31:103–111Google Scholar
  6. 6.
    Bischoff KP, Gravois KA, Reagan TE, Hoy JW, Kimbeng CA, LaBorde CM, Hawkins GL (2008) Registration of ‘L 79-1002’ sugarcane. J Plant Reg 2:211–217Google Scholar
  7. 7.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedGoogle Scholar
  8. 8.
    Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269(2):205–214PubMedGoogle Scholar
  9. 9.
    Bouton J (2002) In Bioenergy crop breeding and production research in the southeast, ORNL/SUB-02-19XSV810C/01Google Scholar
  10. 10.
    Bunphan D, Jaisil P, Sanitchon J, Knoll JE, Anderson WF (2015) Heterosis and combining ability of F1 hybrid sweet sorghum in Thailand. Crop Sci 55:178–187Google Scholar
  11. 11.
    Burrell AM, Sharma A, Patil NY, Collins SD, Anderson WF, Rooney WL, Klein PE (2015) Sequencing of an anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for anthracnose resistance. Crop Sci 55:1–10Google Scholar
  12. 12.
    Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182PubMedGoogle Scholar
  13. 13.
    Casler MD, Vogel KP (1999) Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci 39(1):12–20Google Scholar
  14. 14.
    Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104(1; 1):127–131PubMedGoogle Scholar
  15. 15.
    Casler MD, Pedersen JF, Undersander DJ (2003) Forage yield and economic losses associated with the brown-midrib trait in sudangrass. Crop Sci 43(3; 3):782–789Google Scholar
  16. 16.
    Casler MD, Brummer EC (2008) Theoretical expected genetic gains for among- and within-family selection methods in perennial forage crops. Crop Sci 48:890–902Google Scholar
  17. 17.
    Casler MD (2010) Changes in mean and genetic variance during two cycles of within-family selection in switchgrass. Bioenerg Res 3:47–54Google Scholar
  18. 18.
    Casler MD (2014) Heterosis and reciprocal-cross effects in tetraploid switchgrass. Crop Sci 54:2063–2069Google Scholar
  19. 19.
    Casler MD, Vogel KP (2014) Selection for biomass yield in upland, lowland, and hybrid switchgrass. Crop Sci 54(2):626–636Google Scholar
  20. 20.
    Cuevas HE, Prom LK, Erpelding JE (2014a) Tapping the US sweet sorghum collection to identify biofuel germplasm. Sugar Tech DOI 10.1007/s12355-014-0349-7Google Scholar
  21. 21.
    Cuevas HE, Prom LK, Erpelding JE (2014) Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14. Mol Breed 34:1943–1953Google Scholar
  22. 22.
    Dien BS, Jung HG, Vogel KP, Casler MD, Lamb JFS, Iten L, Mitchell RB, Sarath G (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30:880–891Google Scholar
  23. 23.
    Dien BS, Sarath G, Pederson JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res 2(3):153–164Google Scholar
  24. 24.
    Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925PubMedGoogle Scholar
  25. 25.
    Donohoe BS, Vinzant TB, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresour Technol 102(24):11097–11104PubMedGoogle Scholar
  26. 26.
    Dowd PF, Johnson ET (2009) Differential resistance of switchgrass Panicum virgatum L. lines to fall armyworms Spodoptera frugiperda (J. E. Smith). Genet Resour Crop Ev 56(8):1077–1089Google Scholar
  27. 27.
    Dowd PF, Sarath G, Mitchell RB, Saathoff AJ, Vogel KP (2013) Insect resistance of a full sib family of tetraploid switchgrass Panicum virgatum L. with varying lignin levels. Genet Resour Crop Ev 60(3):975–984Google Scholar
  28. 28.
    Dowd PF, Sattler SE (2015) Caterpillar feeding responses to sorghum leaves with altered lignin leaves. J Insect Science DOI: 10.1093/jisesa/ieu162PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE (2012) SNP discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.). PLoS One 7(9):e44112PubMedPubMedCentralGoogle Scholar
  30. 30.
    Evans J, Kim J, Childs KL, Vaillancourt B, Crisovan E, Nandety A, Gerhardt DJ, Richmond TA, Jeddeloh JA, Kaeppler SM, Casler MD, Buell CR (2014) Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum. Plant J. doi:10.1111/tpj.12601PubMedPubMedCentralGoogle Scholar
  31. 31.
    Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang ZY (2011) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenergy Res 4:153–164Google Scholar
  32. 32.
    Funnell-Harris DL, Sattler SE, Pedersen (2014) Response of Fusarium thapsinum to sorghum brown midrib lines and to phenolic metabolites. Plant Dis 98:1300–1308Google Scholar
  33. 33.
    Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186PubMedGoogle Scholar
  34. 34.
    Grabowski PP, Morris GP, Casler MD, Borevitz JO (2014) Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass. Mol Ecol 23(16):4059–4073PubMedPubMedCentralGoogle Scholar
  35. 35.
    Green AR, Lewis KM, Barr JT, Jones JP, Lu F, Vermerris W, Sattler SE, Kang C (2014) Determination of the structure and catalytic mechanism of Sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib 12 mutations. Pant Physiol 165:1440–1456Google Scholar
  36. 36.
    Gupta SC (1995) Inheritance and allelic study of brown midrib trait in pearl millet. J Hered 86(4; 4):301–303Google Scholar
  37. 37.
    Hale AL, Dufrene EO Jr, Tew TL, Pan Y-B, Viator RP, White PM Jr, Veremis JC, White WH, Cobill R, Richard EP, Rukavina H, Grisham MP (2013) Registration of ‘Ho 02-113’ sugarcane. J Plant Reg 7(1):51–57Google Scholar
  38. 38.
    Hale AL, Viator RP, Veremis JC (2014) Identification of freeze tolerant Saccharum spontaneum accessions through a pot-based study for use in sugarcane germplasm enhancement for adaptation to temperate climates. Biomass Bioenergy 61:53–57Google Scholar
  39. 39.
    Harris K, Anderson W, Malik R (2010) Genetic relationships among napiergrass (Pennisetum purpureum Schum.) nursery accessions using AFLP markers. Plant Genetic Resources: Characterization Utilization 8:63–70Google Scholar
  40. 40.
    Harris-Shultz KR, Ni X, Anderson WF, Knoll JE (2015) Evaluation of whorl damage by fall armyworm (Lepidoptera: Noctuidae) on field-and greenhouse-grown sweet sorghum plants. J Entomol Sci 50(1):14–27Google Scholar
  41. 41.
    Hendrickson JR, Schmer MR, Sanderson MA (2013) Water use efficiency by switchgrass compared with a native grass or a native grass alfalfa mixture. Bioenergy Res 6(2):746–754Google Scholar
  42. 42.
    Hopkins AA, Vogel KP, Moore KJ (1993) Predicted and realized gains from selection for in vitro dry matter digestibility and forage yield in switchgrass. Crop Sci 33(2):253–258Google Scholar
  43. 43.
    Jahufer MZZ, Casler MD (2015) Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop Sci 55:1212–1222Google Scholar
  44. 44.
    Jung HG, Mertens DR, Payne AJ (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628PubMedGoogle Scholar
  45. 45.
    Jung HG, Samac DA, Sarath G (2012) Modifying crops to increase cell wall digestibility. Plant Sci 185–186:65–77PubMedGoogle Scholar
  46. 46.
    Khan NA, Bedre R, Parco A, Bernaola L, Hale AL, Kimbeng C, Pontif M, Baisakh N (2013) Identification of cold-responsive genes in energycane for their use in genetic diversity analysis and future functional marker development. Plant Sci 211:122–131PubMedGoogle Scholar
  47. 47.
    Knoll JE, Anderson WF, Strickland TM, Hubbard RK, Malik R (2012) Low-input production of biomass from perennial grasses in the Coastal Plain of Georgia, USA. Bioenergy Res 5:206–214Google Scholar
  48. 48.
    Knoll JE, Anderson WF, Richard EP Jr, Doran-Peterson J, Baldwin BS, Hale AL, Viator RP (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomass Bioenergy 56:147–156Google Scholar
  49. 49.
    Koch KG, Fithian R, Heng-Moss TM, Bradshaw JD, Sarath G, Spilker C (2014) Evaluation of tetraploid switchgrass (Poales: Poaceae) populations for host suitability and differential resistance to four cereal aphids. J Econ Entomol 107(1):424–431PubMedGoogle Scholar
  50. 50.
    Koch K, Bradshaw J, Heng-Moss T, Sarath G (2014) Categories of resistance to greenbug and yellow sugarcane aphid (Hemiptera: Aphididae) in three tetraploid switchgrass populations. Bioenergy Res 7:1–10Google Scholar
  51. 51.
    Leon RG, Gilbert RA, Comstock JC (2015) Energycane (Saccharum spp. X S. spontaneum L) biomass production, replication, and weed risk assessment scoring in the humid tropics and sub-tropics. Agronomy J 107:323–329Google Scholar
  52. 52.
    Li YF, Wang Y, Tang Y, Kakani VG, Mahalingam R (2013) Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). Bmc Plant Biol 13(1):153. doi: 10.1186/1471-2229-13-153 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215PubMedPubMedCentralGoogle Scholar
  54. 54.
    Mandebvu P, West JW, Hill GM, Gates RN, Hatfield RD, Mullinix BG, Parks AH, Caudle AB (1999) Comparison of Tifton 85 and Coastal bermudgrass for yield, nutrient traits, intake, and digestion by growing beef steers. J Animal Sci 77:1572–1586Google Scholar
  55. 55.
    Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48(4):1312–1320Google Scholar
  56. 56.
    Mehta PJ, Wiltse CC, Rooney WL, Collins SD, Frederiksen RA, Hess DE, Chisi M, TeBeest DO (2005) Classification and inheritance of genetic resistance to anthracnose in sorghum. Field Crops Res 93(1):1–9Google Scholar
  57. 57.
    Milbrandt A, Kinchin C, McCormick R (2013) The feasibility of producing and using biomass-based diesel and jet fuel in the United States. National Renewable Energy Lab, Tech. Rep. NREL/TP-6A20-58015, http://www.nrel.gov/docs/fy14osti/58015.pdf
  58. 58.
    Mitchell RB, Schmer M, Anderson WF, Jin V, Balkcom K, Kiniry J, Coffin A, White P (2016) Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern US. BioEnergy ResearchGoogle Scholar
  59. 59.
    Moore KJ, Birrell SJ, Brown RC, Casler MD, Euken JE, Hanna HM, Hayes DJ, Hill JD, Jacobs KL, Kling CL, Laird D, Mitchell RB, Murphy PT, Raman DR, Schwab CV, Shinners KJ, Vogel KP, Volenec JJ (2015) Midwest vision for sustainable fuel production. Bioenergy DOI: 10.1080/17597269.2015.1015312Google Scholar
  60. 60.
    Nabity PD, Orpet R, Miresmailli S, Berenbaum MR, Delucia EH (2012) Silica and nitrogen modulate physical defense against chewing insect herbivores in bioenergy crops miscanthus × giganteus and Panicum virgatum (Poaceae). J Econ Entomol 105(3):878–883PubMedGoogle Scholar
  61. 61.
    Narasimhamoorthy B, Saha M, Swaller T, Bouton J (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenergy Res 1(2):136–146Google Scholar
  62. 62.
    Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185(3):745–760PubMedPubMedCentralGoogle Scholar
  63. 63.
    Orts W, Dien BS et al. (2016) Biorefinery strategies: conversion of crops and residues to bioenergy and bioproducts. BioEnergy Research XX:XXXXGoogle Scholar
  64. 64.
    Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 229(1):115–127PubMedGoogle Scholar
  65. 65.
    Palmer NA, Sattler SE, Saathoff AJ, Sarath G (2010) A continuous, quantitative fluorescent assay for plant caffeic acid O-methyltransferases. J Agric Food Chem 58(9):5220–5226PubMedGoogle Scholar
  66. 66.
    Palmer NA, Saathoff AJ, Kim J, Benson A, Tobias CM, Twigg P, Vogel KP, Madhavan S, Sarath G (2012) Next-generation sequencing of crown and rhizome transcriptome from an upland, tetraploid switchgrass. Bioenergy Res 5(3):649–661Google Scholar
  67. 67.
    Palmer NA, Saathoff AJ, Tobias CM, Twigg P, Xia Y, Vogel KP, Madhavan S, Sattler SE, Sarath G (2014) Contrasting metabolism in perenniating structures of upland and lowland switchgrass plants late in the growing season. PLoS One 9(8):e105138PubMedPubMedCentralGoogle Scholar
  68. 68.
    Palmer NA, Saathoff AJ, Waters BM, Donze T, Heng-Moss TM, Twigg P, Tobias CM, Sarath G (2014) Global changes in mineral transporters in tetraploid switchgrasses (Panicum virgatum L.). Front Plant Sci 4:549. doi: 10.3389/fpls.2013.00549 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, Tobias C, Sarath G (2015) Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct Integr Genomics 15:1–16PubMedGoogle Scholar
  70. 70.
    Pedersen JF, Funnell DL, Vogel KP (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819Google Scholar
  71. 71.
    Pedersen JF, Sattler SE, Anderson WF (2013) Evaluation of public sweet sorghum A-lines for use in hybrid production. Bioenergy Res 6:91–102Google Scholar
  72. 72.
    Perrin R, Vogel K, Schmer M, Mitchell R (2008) Farm-scale production cost of switchgrass for biomass. Bioenergy Res 1(1):91–97Google Scholar
  73. 73.
    Perumal R, Menz MA, Mehta PJ, Katile S, Gutierrez-Rojas LA, Klein RR, Klein PE, Prom LK, Schlueter JA, Rooney WL, Magill CW (2009) Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica 165:597–606Google Scholar
  74. 74.
    Prom LK, Erpelding JE, Montes-Garcia N (2012) Chinese sorghum germplasm evaluated for resistance to downy mildew and anthracnose. Comm Biom Crop Sci 2:26–31Google Scholar
  75. 75.
    Resende RMS, Casler MD, de Resende MV (2014) Genomic selection in forage breeding: accuracy and methods. Crop Sci 54:143–156Google Scholar
  76. 76.
    Richard EP, Anderson WF (2014) Sugarcane, energy cane and napier grass. In: Karlen DL (ed) Cellulosic energy cropping systems. Wiley, New Delhi, India, pp 91–108Google Scholar
  77. 77.
    Rose LW, Das MK, Taliaferro CM (2008) Estimation of genetic variability and heritability for biofuel feedstock yield in several populations of switchgrass. Ann Appl Biol 152:11–17Google Scholar
  78. 78.
    Saathoff AJ, Tobias CM, Sattler SE, Haas EJ, Twigg P, Sarath G (2010) Switchgrass contains two cinnamyl alcohol dehydrogenases involved in lignin formation. Bioenergy Res 4:1–14Google Scholar
  79. 79.
    Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6(1):e16416PubMedPubMedCentralGoogle Scholar
  80. 80.
    Saathoff AJ, Hargrove MS, Haas EJ, Tobias CM, Twigg P, Sattler S, Sarath G (2012) Switchgrass PviCAD1: understanding residues important for substrate preferences and activity. Appl Biochem Biotechnol 168(5):1086–1100PubMedGoogle Scholar
  81. 81.
    Saathoff AJ, Donze T, Palmer NA, Bradshaw J, Heng-Moss T, Twigg P, Tobias CM, Lagrimini M, Sarath G (2013) Towards uncovering the roles of switchgrass peroxidases in plant processes. Front Plant Sci 4:202. doi: 10.3389/fpls.2013.00202 PubMedPubMedCentralGoogle Scholar
  82. 82.
    Sandhu HS, Gilbert RA, Comstock JC, Gordon VS, Korndörfer P, El-Hout N, Arundale RA (2015) Registration of ‘UFCP 74-1010’ sugarcane. J of Plant Reg 9:179–184Google Scholar
  83. 83.
    Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86(5):1315–1325Google Scholar
  84. 84.
    Sarath G, Vogel KP, Mitchell RB, Baird LM (2005) Stem anatomy of switchgrass plants developed by divergent breeding cycles for tiller digestability. In: XX International Grassland Congress: Offered Papers. Edited by O'Mara FP, Wilkins RJ, 't Mannetje L, Lovett DK, Rogers PAM, Boland TM. Dublin, Ireland: Wageningen Academic Publishers; 975Google Scholar
  85. 85.
    Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223(6):1154–1164PubMedGoogle Scholar
  86. 86.
    Sarath G, Baird LM, Vogel KP, Mitchell RB (2007) Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum. L). Bioresour Technol 98(16):2985–2992PubMedGoogle Scholar
  87. 87.
    Sarath G, Hou G, Baird LM, Mitchell RB (2007) ABA, ROS and NO are key players during switchgrass seed germination. Plant Signal Behav 2(6):492–493PubMedPubMedCentralGoogle Scholar
  88. 88.
    Sarath G, Akin DE, Mitchell RB, Vogel KP (2008) Cell-wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L.) genotypes. Appl Biochem and Biotechnol 150:1–14Google Scholar
  89. 89.
    Sarath G, Mitchell RB (2008) Aged switchgrass seed lot’s response to dormancy-breaking chemicals. Seed Technol 30:7–16Google Scholar
  90. 90.
    Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA, Vogel KP (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35(5):343–354PubMedPubMedCentralGoogle Scholar
  91. 91.
    Sarath G, Dien BS, Saathoff AJ, Vogel KP, Mitchell RB, Chen H (2011) Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresour Tech 102:9579–9585Google Scholar
  92. 92.
    Sarath G, Baird LM, Mitchell RB (2014) Senescence, dormancy and tillering in perennial C4 grasses. Plant Sci 2014(217–218):140–151Google Scholar
  93. 93.
    Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150(2):584–595PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of grasses. Plant Sci 178:229–238Google Scholar
  95. 95.
    Sattler SE, Anderson WF, Clegg MD, Pedersen JF (2012) Evaluation of public dwarf sweet sorghum A-lines for use in hybrid production. Bioenergy Res 6:91–102Google Scholar
  96. 96.
    Sattler SE, Palmer NA, Saballos A, Greene AM, Xin Z, Sarath G, Vermerris W, Pedersen JF (2012) Identification and characterization of 4 missense mutations in brown midrib 12 (Bmr 12); the caffeic O-methyltransferase (COMT) of sorghum. BioEnergy Res 5:855–865Google Scholar
  97. 97.
    Sattler SE, Funnell-Harris DL (2013) Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front Plant Sci 4:70PubMedPubMedCentralGoogle Scholar
  98. 98.
    Sattler SE, Saballos A, Xin Z, Funnell-Harris DL, Vermerris W, Pedersen JF (2014). Characterization of novel Sorghum brown midrib mutants from an EMS-mutagenized population. G3: Genes|Genomes|GeneticsGoogle Scholar
  99. 99.
    Sedivec KK, Tober DA, Duckwitz WL, Dewald DD, Printz JL (2008) Grasses for the Northern Plains, growth patterns, forage characteristics and wildlife values, vol I - cool-season. NDSU Extension Service R-1323. Fargo, N.D., 89 p Google Scholar
  100. 100.
    Serba DD, Uppalapati SR, Mukherjee S, Krom N, Tang YH, Mysore KS, Saha MC (2015) Transcriptome profiling of rust resistance in switchgrass using RNA-seq analysis. Plant Genome 8(2)Google Scholar
  101. 101.
    Shen H, Mazarei M, Hisano H, Escamilla-Trevino L, Fu C, Pu Y, Rudis MR, Tang Y, Xiao X, Jackson L et al (2013) A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25(11):4342–4361PubMedPubMedCentralGoogle Scholar
  102. 102.
    Sollenberger LE, Jones CS (1989) Beef production from N. fertilized Mott. elephantgrass. Trop Grassl 23:129–134Google Scholar
  103. 103.
    Tobias CM, Chow EK (2004) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220(5):678–88PubMedGoogle Scholar
  104. 104.
    Tobias CM, Chow EK (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220(5):678–688PubMedGoogle Scholar
  105. 105.
    Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR, Chow EK, Sarath G (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111(5):956–964PubMedGoogle Scholar
  106. 106.
    Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, Barry K, McCann MC, Carpita NC, Lazo GR (2008) Comparative genomics in switchgrass using 61 585 high-quality expressed sequence tags. Plant Genome 1(2):111–124Google Scholar
  107. 107.
    Todd JR, Glaz BS, Irey MS, Zhao D, Hu C, El-Hout N (2014) Sugarcane genotype selection on a sand soil with and without added mill mud. Agron J 106(1):315–323Google Scholar
  108. 108.
    Viator RP, White PM, Hale AL, Waguespack HL (2012) Screening for tolerance to periodic flooding for cane grown for sucrose and bioenergy. Biomass Bioenergy 44:56–63Google Scholar
  109. 109.
    Villanueva RT, Brewer M, Way MO, Biles S, Sekula D, Bynum E, Swart J, Crumley C, Knutson A, Porter P, Parker R, Odvody G, Allen C, Ragsdale D, Rooney W, Peterson G, Kerns D, Royer T, Armstrong S (2014) Sugarcane aphid: a new pest of sorghum. Texas A&M AgriLife Extension publication ENTO-03Google Scholar
  110. 110.
    Vogel KP (2000) Improving warm-season grasses using selection, breeding, and biotechnology. pp. 83–106. In K.J.Moore and B. Anderson (eds) Native Warm-season Grasses: Research Trends and Issues. CSSA Spec. Publ. 30. CSSA and SSSA, Madison WI, USAGoogle Scholar
  111. 111.
    Vogel KP, Jung HJG (2001) Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 20:15–49Google Scholar
  112. 112.
    Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (2002) Winter survival in switchgrass populations bred for high IVDMD. Crop Sci 42(6):1857–1862Google Scholar
  113. 113.
    Vogel KP (2004) Switchgrass. In: Warm-season (C4) grasses. Edited by Moser LE, Sollenberger L, Burson B. Madison, WI: ASA-CSSA-SSSA; 2004: 561–588Google Scholar
  114. 114.
    Vogel KP, Burson B (2004) Breeding and genetics. In: Moser LE, Sollenberger L, Burson B (eds) Warm-season (C4) Grasses. ASA-CSSA-SSSA, Madison WI, USA, pp 51–96Google Scholar
  115. 115.
    Vogel KP, G. Sarath, and R. Mitchell (2005) Divergent breeding for tiller digestibility, modified leaf, sheath and stem composition of switchgrass (Panicum virgatum L.). In: XX International Grassland Congress : offered papers; Dublin, Ireland. Wageningen Academic Publishers: 116Google Scholar
  116. 116.
    Vogel KP, Mitchell RB, Klopfenstein TJ, Anderson BE (2006) Registration of ‘Bonanza’ big bluestem. Crop Sci 46:2313–2314Google Scholar
  117. 117.
    Vogel KP, Mitchell RB, Klopfenstein TJ, Anderson BE (2006) Registration of ‘Goldmine’ big bluestem. Crop Sci 46:2314–2315Google Scholar
  118. 118.
    Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48(6):2159–2164Google Scholar
  119. 119.
    Vogel KP, Mitchell RB, Haskins FA, Newell LC, Klopfenstein TJ, Erickson G, Anderson BE (2010) Registration of ‘Warrior’, ‘Scout’, and ‘Chief’ indiangrass. J Plt Registrations 4:115–122Google Scholar
  120. 120.
    Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. BioEnergy Res 4:96–110Google Scholar
  121. 121.
    Vogel KP, Sarath G, Saathoff AJ, Mitchell RB (2011) Switchgrass. Rsc Energy Environ S 3:341–380Google Scholar
  122. 122.
    Vogel K, Mitchell R, Sarath G, Casler MD (2014) Registration of ‘Liberty’ switchgrass. J Plant Reg 8:242–247Google Scholar
  123. 123.
    Wang LP, Jackson PA, Lu X, Fan YH, Foreman JW, Chen XK, Deng HH, Fu C, Ma L, Aitken KS (2008) Evaluation of sugarcane x Saccharum spontaneum progeny for biomass composition and yield components. Crop Sci 48:951–961Google Scholar
  124. 124.
    Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray et al (2009) Genetic diversity and population structure analysis of accessions in US historic sweet sorghum collection. Theor Appl Genet 120:13–23PubMedGoogle Scholar
  125. 125.
    Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R (2012) Exploring the switchgrass transcriptome using second-generation sequencing technology. PLoS One 7(3):e34225PubMedPubMedCentralGoogle Scholar
  126. 126.
    Wang Y, Acharya A, Burrell A, Klein RR, Klein PE, Hasenstein KH (2013) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56:659–665PubMedGoogle Scholar
  127. 127.
    Wang F, Zhao S, Han Y, Shao Y, Dong Z, Gao Y, Zhang K, Liu X, Li D, Chang J, Wang D (2013) Efficient and fine mapping of RMES1 conferring resistance to sorghum aphid Melanaphis sacchari. Mol Breed 31:777–784Google Scholar
  128. 128.
    Young HA, Sarath G, Tobias CM (2012) Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. Bmc Plant Biol 12:117PubMedPubMedCentralGoogle Scholar
  129. 129.
    Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD (2011) Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 122(4):805–817PubMedGoogle Scholar
  130. 130.
    Zhang YW, Zalapa J, Jakubowski AR, Price DL, Acharya A, Wei YL, Brummer EC, Kaeppler SM, Casler MD (2011) Natural hybrids and gene flow between upland and lowland switchgrass. Crop Sci 51(6):2626–2641Google Scholar
  131. 131.
    Zhang YW, Zalapa JE, Jakubowski AR, Price DL, Acharya A, Wei YL, Brummer EC, Kaeppler SM, Casler MD (2011) Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica 139(7):933–948PubMedGoogle Scholar
  132. 132.
    Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC, He J, Shen H, Srivastava AC, Pennacchio C et al (2013) Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 74(1):160–173PubMedGoogle Scholar
  133. 133.
    Zhu QH, Bennetzen JL, Smith SM (2013) Isolation and diversity analysis of resistance gene homologues from switchgrass. G3-Genes Genom Genet 3(6):1031–1042Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • W. F. Anderson
    • 1
    Email author
  • G. Sarath
    • 2
  • S. Edme
    • 2
  • M. D. Casler
    • 3
  • R. B. Mitchell
    • 2
  • C. M. Tobias
    • 4
  • A. L. Hale
    • 5
  • S. E. Sattler
    • 2
  • J. E. Knoll
    • 1
  1. 1.USDA/ARS Crop Genetics and Breeding Research UnitTiftonUSA
  2. 2.USDA/ARS Grain, Forage and Bioenergy ResearchUNLLincolnUSA
  3. 3.USDA/ARS US Dairy Forage Research CenterMadisonUSA
  4. 4.USDA/ARS Crop Improvement and Genetics ResearchWRRCAlbanyUSA
  5. 5.USDA/ARS Sugarcane Research UnitHoumaUSA

Personalised recommendations