Advertisement

BioEnergy Research

, Volume 9, Issue 1, pp 109–122 | Cite as

Targeted Switchgrass BAC Library Screening and Sequence Analysis Identifies Predicted Biomass and Stress Response-Related Genes

  • Manoj K. Sharma
  • Rita Sharma
  • Peijian Cao
  • Mitch Harkenrider
  • Jerry Jenkins
  • Jane Grimwood
  • Jiyi Zhang
  • Michael K. Udvardi
  • Jeremy Schmutz
  • Pamela C. RonaldEmail author
Article

Abstract

To identify switchgrass homologs of rice genes, known/predicted to control biomass and stress response-related traits, we screened 96,000 clones from two switchgrass bacterial artificial chromosome (BAC) libraries. Full-length sequencing of 311 BAC clones revealed sequence for ∼3.2 % (51.7 Mb) of the switchgrass genome, coding for 3948 genes. A comparison with Arabidopsis and five grass genomes revealed that switchgrass genes share the highest number of homologs with rice (95.5 %) followed by foxtail millet (91.7 %) and Sorghum (91.5 %). One hundred eighteen of the annotated genes are unique to switchgrass. Gene annotation and ontology analysis revealed 695 genes belonging to gene families targeted in the screening. These include 350 kinase, 203 glycosyltransferase (GT), 109 glycoside hydrolase (GH), and 33 ethylene responsive transcription factor (ERF) family genes. Rice homologs of 65 genes, identified here, have demonstrated roles in bioenergy-relevant traits. These include 14 GT2 family genes involved in the synthesis of cellulose and hemicelluloses. Comparative expression analysis in six switchgrass organs revealed a conserved expression pattern for three cellulose synthase (CesA1, CesA2, and CesA9) and five cellulose-synthase-like genes (CslA2, CslA11, CslC1, CslD4, and CslE6). CslF genes that encode mixed linkage glucans are expressed in wider range of tissues in switchgrass compared with rice.

Keywords

BAC library Biofuel Cellulose synthase Glycoside hydrolase Glycosyltransferase Kinase Screening Stress and switchgrass 

Notes

Acknowledgments

This work was primarily supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 to US Department of Energy Joint Genome Institute and Office of Biological and Environmental Research of the US, Joint BioEnergy Institute, and to the BioEnergy Science Center (grant number DE-PS02-06ER64304). Partial funding for this research was provided by the NSF CREATE-IGERT program at UC Davis (Award Number DGE-0653984).

Supplementary material

12155_2015_9667_MOESM1_ESM.png (407 kb)
Supplementary Figure 1 Flow chart showing the BAC library screening workflow used in this study. (PNG 406 kB)
12155_2015_9667_MOESM2_ESM.txt (14 mb)
Supplementary File 1 Genomic sequences of switchgrass genes annotated from full-length sequences of BAC clones. (TXT 14353 kB)
12155_2015_9667_MOESM3_ESM.txt (5.6 mb)
Supplementary File 2 cDNA sequences of switchgrass genes annotated from full-length BAC clones. (TXT 5759 kB)
12155_2015_9667_MOESM4_ESM.xlsx (34 kb)
Supplementary Table 1 BAC statistics (XLSX 34 kB)
12155_2015_9667_MOESM5_ESM.xlsx (1.4 mb)
Supplementary Table 2 List of genes annotated from switchgrass BAC clones. (XLSX 1432 kB)
12155_2015_9667_MOESM6_ESM.xlsx (1015 kb)
Supplementary Table 3 Homologs of genes annotated from switchgrass full-length BAC sequences from five grass genomes and Arabidopsis. (XLSX 1014 kB)
12155_2015_9667_MOESM7_ESM.xlsx (11 kb)
Supplementary Table 4 List of primers used for qPCR analysis. (XLSX 10 kB)

References

  1. 1.
    Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Congcr BV, Parrish DJ, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93. doi: 10.1016/0960-8524(95)00176-X CrossRefGoogle Scholar
  2. 2.
    McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535. doi: 10.1016/j.biombioe.2004.05.006 CrossRefGoogle Scholar
  3. 3.
    Fike J, Parrish D, Wolf D, Balasko J, Green J Jr, Rasnake M, Reynolds J (2006) Long-term yield potential of switchgrass-for-biofuel systems. Biomass Bioenergy 30:198–206. doi: 10.1016/j.biombioe.2005.10.006 CrossRefGoogle Scholar
  4. 4.
    Wright L (2007) Historical perspective on how and why switchgrass was selected as a "model" high-potential energy crop. United States Department of Energy Document DE-AC05-00OR22725 Oak Ridge National Laboratory, Oak Ridge, TN (August)Google Scholar
  5. 5.
    Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105(2):464–469. doi: 10.1073/pnas.0704767105 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Barney JN, Mann JJ, Kyser GB, Blumwald E, Deynze AV, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Sci 177:724–732. doi: 10.1016/j.plantsci.2009.09.003 CrossRefGoogle Scholar
  7. 7.
    Cannella D, Jorgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111(1):59–68. doi: 10.1002/Bit.25098 CrossRefPubMedGoogle Scholar
  8. 8.
    Davidson S (2008) Sustainable bioenergy: genomics and biofuels development. Nat Educ 1(1):175Google Scholar
  9. 9.
    Johnson JM-F, Coleman MD, Gesch R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW (2007) Biomass-bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–28Google Scholar
  10. 10.
    Casler MD, Tobias CM, Kaeppler SM, Buell CR, Wang ZY, Cao P, Schmutz J, Ronald P (2011) The switchgrass genome: tools and strategies. Plant Genome 4(3):273–282. doi: 10.3835/plantgenome2011.10.0026 CrossRefGoogle Scholar
  11. 11.
    Nageswara-Rao M, Soneji JR, Kwit C, Stewart CN Jr (2013) Advances in biotechnology and genomics of switchgrass. Biotechnol Biofuels 6(1):77. doi: 10.1186/1754-6834-6-77 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Bio 6(11):850–861. doi: 10.1038/Nrm1746 CrossRefGoogle Scholar
  13. 13.
    Sharma R, Tan F, Jung KH, Sharma MK, Peng ZH, Ronald PC (2011) Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice. Plant Mol Biol 77(4-5):391–406. doi: 10.1007/S11103-011-9819-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Nigorikawa M, Watanabe A, Furukawa K, Sonoki T, Ito Y (2012) Enhanced saccharification of rice straw by overexpression of rice exo-glucanase. Rice (N Y) 5(1):14. doi: 10.1186/1939-8433-5-14 Google Scholar
  15. 15.
    Furukawa K, Ichikawa S, Nigorikawa M, Sonoki T, Ito Y (2014) Enhanced production of reducing sugars from transgenic rice expressing exo-glucanase under the control of a senescence-inducible promoter. Transgenic Res 23(3):531–537. doi: 10.1007/s11248-014-9786-z CrossRefPubMedGoogle Scholar
  16. 16.
    Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sanchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161(4):1615–1633. doi: 10.1104/pp. 112.208694 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas PE, Ruan R, Park CJ, Chen X, Hwang S, Jeon JS, Ronald PC (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7(4), e1002020. doi: 10.1371/journal.pgen.1002020 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC (2013) Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant 6(2):250–260. doi: 10.1093/Mp/Sss147 CrossRefPubMedGoogle Scholar
  19. 19.
    Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. Plos Pathog 2(1):e2. doi: 10.1371/journal.ppat.0020002 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Kohorn BD, Kohorn SL (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88. doi: 10.3389/fpls.2012.00088 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Bba-Gene Regul Mech 1819(2):86–96. doi: 10.1016/J.Bbagrm.2011.08.004 Google Scholar
  22. 22.
    Jung KH, Cao P, Seo YS, Dardick C, Ronald PC (2010) The Rice Kinase Phylogenomics Database: a guide for systematic analysis of the rice kinase super-family. Trends Plant Sci 15(11):595–599. doi: 10.1016/j.tplants.2010.08.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Sharma R, Cao P, Jung KH, Sharma MK, Ronald PC (2013) Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research. Front Plant Sci 4:330. doi: 10.3389/fpls.2013.00330 PubMedCentralPubMedGoogle Scholar
  24. 24.
    Cao PJ, Bartley LE, Jung KH, Ronald PC (2008) Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Mol Plant 1(5):858–877. doi: 10.1093/mp/ssn052 CrossRefPubMedGoogle Scholar
  25. 25.
    Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. MGG 284(6):455–475. doi: 10.1007/s00438-010-0580-1 CrossRefPubMedGoogle Scholar
  26. 26.
    Sharma MK, Sharma R, Cao PJ, Jenkins J, Bartley LE, Qualls M, Grimwood J, Schmutz J, Rokhsar D, Ronald PC (2012) A genome-wide survey of switchgrass genome structure and organization. PLoS One 7(4):e33892. doi: 10.1371/journal.pone.0033892 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185(3):745–760. doi: 10.1534/genetics.110.113910 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20(2):197–207. doi: 10.1093/dnares/dst002 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Gabaldon T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nat Rev Genet 14(5):360–366. doi: 10.1038/nrg3456 CrossRefPubMedGoogle Scholar
  30. 30.
    Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4(2):199–211. doi: 10.1093/mp/ssq079 CrossRefPubMedGoogle Scholar
  31. 31.
    Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112:91–99. doi: 10.1016/j.phytochem.2014.07.009 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang LQ, Guo K, Li Y, Tu YY, Hu HZ, Wang BR, Cui XC, Peng LC (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Bio 10:282. doi: 10.1186/1471-2229-10-282 CrossRefGoogle Scholar
  33. 33.
    Burn JE, Hocart CH, Birch RJ, Cork AC, Williamson RE (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 129(2):797–807. doi: 10.1104/pp. 010931 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci U S A 100(3):1450–1455. doi: 10.1073/pnas.0337628100 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S (2011) Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot 62(6):2053–2062. doi: 10.1093/jxb/erq395 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Carroll A, Specht CD (2011) Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front Plant Sci 2:5. doi: 10.3389/fpls.2011.00005 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Yoshikawa T, Eiguchi M, Hibara KI, Ito JI, Nagato Y (2013) Rice SLENDER LEAF 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. J Exp Bot 64(7):2049–2061. doi: 10.1093/Jxb/Ert060 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Li M, Xiong G, Li R, Cui J, Tang D, Zhang B, Pauly M, Cheng Z, Zhou Y (2009) Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J 60(6):1055–1069. doi: 10.1111/j.1365-313X.2009.04022.x CrossRefPubMedGoogle Scholar
  39. 39.
    Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311(5769):1940–1942. doi: 10.1126/Science.1122975 CrossRefPubMedGoogle Scholar
  40. 40.
    Vega-Sanchez ME, Verhertbruggen Y, Christensen U, Chen XW, Sharma V, Varanasi P, Jobling SA, Talbot M, White RG, Joo M, Singh S, Auer M, Scheller HV, Ronald PC (2012) Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol 159(1):56–69. doi: 10.1104/Pp.112.195495 PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Xie G, Yang B, Xu Z, Li F, Guo K, Zhang M, Wang L, Zou W, Wang Y, Peng L (2013) Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS One 8(1):e50171. doi: 10.1371/journal.pone.0050171 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Chen W, VanOpdorp N, Fitzl D, Tewari J, Friedemann P, Greene T, Thompson S, Kumpatla S, Zheng P (2012) Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. Plant Mol Biol 80(3):289–297. doi: 10.1007/s11103-012-9948-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O, d’Yvoire MB, Cezard L, Legee F, Blondet E, Oria N, Troadec C, Brunaud V, Jouanin L, Hofte H, Bendahmane A, Lapierre C, Sibout R (2013) A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One 8(6):e65503. doi: 10.1371/journal.pone.0065503 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6(1), e16416. doi: 10.1371/journal.pone.0016416 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108(9):3803–3808. doi: 10.1073/pnas.1100310108 PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Koshiba T, Murakami S, Hattori T, Mukai M, Takahashi A, Miyao A, Hirochika H, Suzuki S, Sakamoto M, Umezawa T (2013) CAD2 deficiency causes both brown midrib and gold hull and internode phenotypes in Oryza sativa L. cv. Nipponbare. Plant Biotechnol 30(4):365–374. doi: 10.5511/plantbiotechnology.13.0527a CrossRefGoogle Scholar
  47. 47.
    Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011) Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol 157(1):109–119. doi: 10.1104/pp. 111.176982 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57(4):732–746. doi: 10.1111/j.1365-313X.2008.03729.x CrossRefPubMedGoogle Scholar
  49. 49.
    Chiniquy D, Varanasi P, Oh T, Harholt J, Katnelson J, Singh S, Auer M, Simmons B, Adams PD, Scheller HV, Ronald PC (2013) Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis. Front Plant Sci 4:83. doi: 10.3389/fpls.2013.00083 PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Dai X, You C, Chen G, Li X, Zhang Q, Wu C (2011) OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol 75(4-5):333–345. doi: 10.1007/s11103-011-9730-z CrossRefPubMedGoogle Scholar
  51. 51.
    Zhou Y, Li S, Qian Q, Zeng D, Zhang M, Guo L, Liu X, Zhang B, Deng L, Liu X, Luo G, Wang X, Li J (2009) BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). Plant J 57(3):446–462. doi: 10.1111/j.1365-313X.2008.03703.x CrossRefPubMedGoogle Scholar
  52. 52.
    Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J (2013) Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J Exp Bot 64(2):541–552. doi: 10.1093/jxb/ers346 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162(6):711–717. doi: 10.1016/j.jplph.2004.12.002 CrossRefPubMedGoogle Scholar
  54. 54.
    Cantu D, Yang B, Ruan R, Li K, Menzo V, Fu D, Chern M, Ronald PC, Dubcovsky J (2013) Comparative analysis of protein-protein interactions in the defense response of rice and wheat. BMC Genomics 14:166. doi: 10.1186/1471-2164-14-166 PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Sheikh AH, Raghuram B, Jalmi SK, Wankhede DP, Singh P, Sinha AK (2013) Interaction between two rice mitogen activated protein kinases and its possible role in plant defense. BMC Plant Biol 13:121. doi: 10.1186/1471-2229-13-121 PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Cao P, Jung KH, Choi D, Hwang D, Zhu J, Ronald PC (2012) The Rice Oligonucleotide Array Database: an atlas of rice gene expression. Rice (N Y) 5(1):17. doi: 10.1186/1939-8433-5-17 Google Scholar
  57. 57.
    Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC, He J, Shen H, Srivastava AC, Pennacchio C, Lindquist E, Grimwood J, Schmutz J, Xu Y, Sharma M, Sharma R, Bartley LE, Ronald PC, Saha MC, Dixon RA, Tang Y, Udvardi MK (2013) Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 74(1):160–173. doi: 10.1111/tpj.12104 CrossRefPubMedGoogle Scholar
  58. 58.
    Yamamoto E, Yonemaru J, Yamamoto T, Yano M (2012) OGRO: The overview of functionally characterized genes in rice online database. Rice (N Y) 5:26. doi: 10.1186/1939-8433-5-26 Google Scholar
  59. 59.
    Danyluk J, Carpentier E, Sarhan F (1996) Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat. FEBS Lett 389(3):324–327CrossRefPubMedGoogle Scholar
  60. 60.
    Clark L, Carbon J (1976) A colony bank containing synthetic Col E1 hybrids representative of the entire E. coli genome. Cell 9:91–99CrossRefGoogle Scholar
  61. 61.
    Ariyadasa R, Stein N (2012) Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol 2012:184854. doi: 10.1155/2012/184854 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Bouzidi MF, Franchel J, Tao Q, Stormo K, Nicolas MP, Mouzeyar S (2006) A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theor Appl Genet 113:81–89. doi: 10.1007/s00122-006-0274-6 CrossRefPubMedGoogle Scholar
  63. 63.
    Vu GT, Caligari PD, Wilkinson MJ (2010) A simple, high throughput method to locate single copy sequences from bacterial artificial chromosome (BAC) libraries using high resolution melt analysis. BMC Genomics 11:301. doi: 10.1186/1471-2164-11-301 PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Kolpakov R, Bana G, Kucherov G (2003) mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31(13):3672–3678PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Tarailo-Graovac M, Chen N (2009) Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4:Unit 4 10. doi: 10.1002/0471250953.bi0410s25
  66. 66.
    Smit A, Hubley R, P. G (2010) RepeatMasker Open-3.0. 1996-2010Google Scholar
  67. 67.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408. doi: 10.1006/Meth.2001.1262 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Manoj K. Sharma
    • 1
    • 2
    • 3
  • Rita Sharma
    • 1
    • 2
    • 4
  • Peijian Cao
    • 5
  • Mitch Harkenrider
    • 1
  • Jerry Jenkins
    • 6
    • 7
  • Jane Grimwood
    • 6
    • 7
  • Jiyi Zhang
    • 8
  • Michael K. Udvardi
    • 8
  • Jeremy Schmutz
    • 6
    • 7
  • Pamela C. Ronald
    • 1
    • 2
    Email author
  1. 1.Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisUSA
  2. 2.Joint BioEnergy InstituteEmeryvilleUSA
  3. 3.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  4. 4.School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
  5. 5.China Tobacco Gene Research CenterZhengzhou Tobacco Research InstituteZhengzhouChina
  6. 6.HudsonAlpha Institute for BiotechnologyHuntsvilleUSA
  7. 7.Department of Energy Joint Genome InstituteWalnut CreekUSA
  8. 8.Plant Biology DivisionSamuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations