Advertisement

BioEnergy Research

, Volume 8, Issue 3, pp 1014–1021 | Cite as

Fermentation of Dilute Acid Pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

  • Kelsey L. Yee
  • Miguel RodriguezJr
  • Choo Y. Hamilton
  • Scott D. Hamilton-Brehm
  • Olivia A. Thompson
  • James G. Elkins
  • Brian H. Davison
  • Jonathan R. Mielenz
Article

Abstract

Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated wild-type Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three thermophilic, cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH-controlled anaerobic fermentation conditions, each candidate successfully digested a minimum of 75 % of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cells and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required approximately 50 h to achieve 75 % cellulose utilization. In contrast, the noncellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required about 100 h after a significant lag phase to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 g of total metabolites per gram of loaded glucan, respectively. These data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.

Keywords

Clostridium thermocellum Caldicellulosiruptor bescii Caldicellulosiruptor obsidiansis Consolidated bioprocessing Dilute acid pretreated Populus Thermophilic fermentation 

Abbreviations

SSF

Simultaneous saccharification and fermentation

CBP

Consolidated bioprocessing

DA

Dilute acid pretreatment

HW

Hot water

HPLC

High-performance liquid chromatography

ATCC

American Type Culture Collection

Notes

Acknowledgments

This research was funded by the Bioenergy Science Center (BESC) which is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The pretreatment of the Populus sample was performed by Robert Sykes and others at the National Renewable Energy Laboratory. ORNL is managed by UT-Battelle, LLC, Oak Ridge, TN, USA, for the DOE under contract DE-AC05-00OR22725.

Conflict of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

KLY planned the work, conducted the experiments, and wrote the manuscript. MR Jr helped conduct experiments, assisted in data acquisition/analysis, and edited the manuscript. CYH helped conduct experiments. SDHB helped with enumeration of planktonic cells and edit the manuscript. OAT edited the manuscript. JRM helped plan the experiments and edited the manuscript. BHD and JGE helped plan and edit the manuscript. All authors have read and approved the final manuscript.

Supplementary material

12155_2015_9659_MOESM1_ESM.pptx (59 kb)
Figures S1 Time course profile of the biomass residual glucan and xylan content for C. thermocellum on dilute acid pretreated Populus (5 g/L dry biomass). (PPTX 59 kb)
12155_2015_9659_MOESM2_ESM.pptx (58 kb)
Figure S2 Time course profile of the biomass residual glucan and xylan content for C. obsidiansis on dilute acid pretreated Populus (5 g/L dry biomass). (PPTX 57 kb)
12155_2015_9659_MOESM3_ESM.pptx (59 kb)
Figure S3 Time course profile of the biomass residual glucan and xylan content for C. bescii on dilute acid pretreated Populus (5 g/L dry biomass). (PPTX 59 kb)

References

  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi: 10.1126/science.1114736 CrossRefPubMedGoogle Scholar
  2. 2.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. doi: 10.1126/science.1121416 CrossRefPubMedGoogle Scholar
  3. 3.
    Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog 19:254–262. doi: 10.1021/bp025654l CrossRefPubMedGoogle Scholar
  4. 4.
    Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi: 10.1007/s00253-005-0229-x CrossRefPubMedGoogle Scholar
  5. 5.
    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. doi: 10.1038/nbt1316 CrossRefPubMedGoogle Scholar
  6. 6.
    Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313. doi: 10.1007/s11627-009-9219-5 CrossRefGoogle Scholar
  7. 7.
    Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. doi: 10.1016/j.biotechadv.2006.03.003 CrossRefGoogle Scholar
  8. 8.
    Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087. doi: 10.1002/bit.24370 CrossRefPubMedGoogle Scholar
  9. 9.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi: 10.1128/mmbr.66.4.739.2002
  10. 10.
    Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. doi: 10.1016/j.copbio.2005.08.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803. doi: 10.1021/bp990107u CrossRefPubMedGoogle Scholar
  12. 12.
    Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405. doi: 10.1016/j.copbio.2011.11.026 CrossRefPubMedGoogle Scholar
  13. 13.
    Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448. doi: 10.1111/1574-6976.12044 CrossRefPubMedGoogle Scholar
  14. 14.
    Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4, e5271. doi: 10.1371/journal.pone.0005271 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shao XJ, Jin MJ, Guseva A, Liu CG, Balan V, Hogsett D, Dale BE, Lynd L (2011) Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol 102:8040–8045. doi: 10.1016/j.biortech.2011.05.021 CrossRefPubMedGoogle Scholar
  16. 16.
    Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217. doi: 10.1016/j.copbio.2008.04.007 CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson CM, Yang S, Rodriguez M Jr, Ma Q, Johnson CM, Dice L, Xu Y, Brown SD (2013) Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol Biofuels 6(1):131. doi: 10.1186/1754-6834-6-131 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124. doi: 10.1128/mmbr.69.1.124-154.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294. doi: 10.1128/aem.00646-11 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55:3131–3139PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fu CX, Mielenz JR, Xiao XR, Ge YX, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A A108:3803–3808. doi: 10.1073/pnas.1100310108 CrossRefGoogle Scholar
  22. 22.
    Yee KL, Rodriguez M, Thompson OA, Fu CX, Wang ZY, Davison BH, Mielenz JR (2014) Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol Biofuels 7:75. doi: 10.1186/1754-6834-7-75 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin YB, Xu Y, Kataeva I, Poole FL, Adams MWW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM (2012) Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol 194:4015–4028. doi: 10.1128/jb.00266-12 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Svetlitchnyi VA, Kensch O, Falkenhan DA, Korseska SG, Lippert N, Prinz M, Sassi J, Schickor A, Curvers S (2013) Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol Biofuels 6(1):31. doi: 10.1186/1754-6834-6-31 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ivanova G, Rakhely G, Kovacs KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670. doi: 10.1016/j.ijhydene.2009.02.082 CrossRefGoogle Scholar
  26. 26.
    Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz 1:21–39. doi: 10.1007/s12649-009-9001-2 CrossRefGoogle Scholar
  27. 27.
    de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12. doi: 10.1186/1754-6834-2-12 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35:1128–1137. doi: 10.1016/j.ijhydene.2009.11.082 CrossRefGoogle Scholar
  29. 29.
    Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J (2012) Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS One 7(8):e43844. doi: 10.1371/journal.pone.0043844 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chung D, Cha M, Farkas J, Westpheling J (2013) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8(5):e62881. doi: 10.1371/journal.pone.0062881 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chung DW, Farkas J, Westpheling J (2013) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6(1):82. doi: 10.1186/1754-6834-6-82 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cha M, Chung DW, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):85. doi: 10.1186/1754-6834-6-85 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A A111:8931–8936. doi: 10.1073/pnas.1402210111 CrossRefGoogle Scholar
  34. 34.
    Lochner A, Giannone RJ, Keller M, Antranikian G, Graham DE, Hettich RL (2011) Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J Proteome Res 10:5302–5314. doi: 10.1021/pr200536j CrossRefPubMedGoogle Scholar
  35. 35.
    Lochner A, Giannone RJ, Rodriguez M, Shah MB, Mielenz JR, Keller M, Antranikian G, Graham DE, Hettich RL (2011) Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol 77:4042–4054. doi: 10.1128/aem.02811-10 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020. doi: 10.1128/aem.01903-09 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MWW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl Environ Microbiol 75:4762–4769CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Basen M, Rhaesa AM, Kataeva I, Prybol CJ, Scott IM, Poole FL, Adams MWW (2014) Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol 152:384–392. doi: 10.1016/j.biortech.2013.11.024 CrossRefPubMedGoogle Scholar
  39. 39.
    Yee KL, Rodriguez M, Tschaplinski TJ, Engle NL, Martin MZ, Fu CX, Wang ZY, Hamilton-Brehm SD, Mielenz JR (2012) Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol Biofuels 5(1):81. doi: 10.1186/1754-6834-5-81 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilson CM, Rodriguez M, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD (2013) Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnol Biofuels 6(1):179. doi: 10.1186/1754-6834-6-179 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Linville JL, Rodriguez M Jr, Mielenz JR, Cox CD (2013) Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol 147:605–613. doi: 10.1016/j.biortech.2013.08.086 CrossRefPubMedGoogle Scholar
  42. 42.
    Kataeva I, Foston MB, Yang SJ, Pattathil S, Biswal AK, Poole FL, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C, Zeng YN, Tschaplinski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskas AJ, Ding SY, Kelly RM, Hahn MG, Adams MWW (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6:2186–2195. doi: 10.1039/c3ee40932e CrossRefGoogle Scholar
  43. 43.
    Holwerda EK, Thorne PG, Olson DG, Amador-Noguez D, Engle NL, Tschaplinski TJ, P van Diijken J, Lynd LR (2014) The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol Biofuels 7:155. doi: 10.1186/s13068-014-0155-1 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103:293–299. doi: 10.1016/j.biortech.2011.09.128 CrossRefPubMedGoogle Scholar
  45. 45.
    Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. doi: 10.1021/bp0702018 CrossRefPubMedGoogle Scholar
  46. 46.
    Kumar R, Wyman CE (2009) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 25:807–819. doi: 10.1002/btpr.153 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kelsey L. Yee
    • 1
    • 2
    • 6
  • Miguel RodriguezJr
    • 1
    • 2
  • Choo Y. Hamilton
    • 1
    • 2
    • 3
  • Scott D. Hamilton-Brehm
    • 1
    • 2
    • 5
  • Olivia A. Thompson
    • 1
    • 2
  • James G. Elkins
    • 1
    • 2
  • Brian H. Davison
    • 1
    • 2
  • Jonathan R. Mielenz
    • 1
    • 2
    • 4
  1. 1.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA
  3. 3.University of Tennessee, Institute of AgricultureCenter for Renewable CarbonKnoxvilleUSA
  4. 4.White Cliff BiosystemsRockwoodUSA
  5. 5.Division of Earth and Ecosystem SciencesDessert Research InstituteLas VegasUSA
  6. 6.Genomatica Inc.San DiegoUSA

Personalised recommendations