BioEnergy Research

, Volume 8, Issue 4, pp 1962–1972 | Cite as

Temperature-Dependent Lipid Conversion and Nonlipid Composition of Microalgal Hydrothermal Liquefaction Oils Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Nilusha Sudasinghe
  • Harvind Reddy
  • Nicholas Csakan
  • Shuguang Deng
  • Peter Lammers
  • Tanner Schaub
Article

Abstract

We illustrate a detailed compositional characterization of hydrothermal liquefaction (HTL) oils derived from two biochemically distinct microalgae, Nannochloropsis gaditana and Chlorella sp. (DOE 1412), for a range of reaction temperature as observed by high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The unique capability to unequivocally derive molecular formulae directly from FT-ICR MS-measured mass-to-charge ratio (for several thousand compounds in each oil) shows that lipids are completely reacted/converted for any reaction temperature above 200 °C and reveals the formation of nonlipid reaction products with increasing temperature. Specifically, lipid-rich oil is obtained at low reaction temperature (<225 °C) for both microalgal strains. For positive ion mode, the major lipid components in Chlorella sp. and N. gaditana HTL oils are betaine lipids and acylglycerols, respectively. Acidic species in the HTL oils (observed by negative ion mode) are dominated by free fatty acids (FFA) regardless of reaction temperature. HTL oils obtained at higher temperatures (≥225 °C) are composed of a variety of basic nitrogen- and oxygen-containing compounds that originate from protein and carbohydrate degradation at elevated temperature. Similar structural features are observed for the abundant nitrogen heterocyclics between the two strains with slightly lower carbon number for Chlorella sp., overall.

Keywords

Nannochloropsis Chlorella Hydrothermal liquefaction Lipids FT-ICR MS Mass spectrometry 

Notes

Acknowledgments

The authors thank Barry Dungan for providing FAME quantitation and Omar Holguin for helpful discussion. This work was supported by the US Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts, the National Science Foundation (IIA-1301346), the NMSU Agricultural Experiment Station and the Center for Animal Health and Food Safety at New Mexico State University.

Supplementary material

12155_2015_9635_MOESM1_ESM.pdf (37 kb)
Online Resource 1Positive-ion ESI MS2 spectrum of 16:0 monoacylglyceryl-N,N,N-trimethylhomoserine (MGTS) (top) and MS3 spectrum of 456 Da ion from Chlorella sp. HTL oil produced at 180 °C (PDF 36 kb)
12155_2015_9635_MOESM2_ESM.pdf (48 kb)
Online Resource 2Positive-ion ESI MS2 spectrum of 16:0/20:5 diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) (top) and 16:0/16:1 DGTS (bottom) from Chlorella sp. HTL oil produced at 180 °C (PDF 48 kb)
12155_2015_9635_MOESM3_ESM.pdf (127 kb)
Online Resource 3Positive-ion ESI MS2 spectrum of 16:0/16:1 diacylglycerol (DAG) (top) and 16:0/16:0/16:1 TAG (bottom) from N. gaditana HTL oil produced at 180 °C (PDF 126 kb)
12155_2015_9635_MOESM4_ESM.pdf (43 kb)
Online Resource 4Acid- and base-catalyzed FAME profiles for N. gaditana (top) and Chlorella sp. (bottom) biomass (PDF 42 kb)
12155_2015_9635_MOESM5_ESM.pdf (44 kb)
Online Resource 5Negative-ion ESI FT-ICR MS abundance-contoured plots of DBE versus carbon number for oxidized fatty acids observed for Chlorella sp. (left) and N. gaditana (right) HTL oils produced at 300 °C (PDF 43 kb)
12155_2015_9635_MOESM6_ESM.pdf (39 kb)
Online Resource 6Negative-ion ESI MS2 spectrum of the predominant O5 sulfate lipid (C32H65O5S1) (top) and O4 sulfate lipid (C32H63O4S1) (bottom) from N. gaditana HTL oil produced at 180 °C (PDF 38 kb)
12155_2015_9635_MOESM7_ESM.pdf (29 kb)
Online Resource 7Negative-ion ESI MS2 spectrum of 16:0 sulfoquinovosyl monoacylglycerol (SQMG) from Chlorella sp. HTL oil produced at 180 °C (PDF 29 kb)

References

  1. 1.
    Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of nannochloropsis sp. Energy Fuel 24:3639–3646CrossRefGoogle Scholar
  2. 2.
    Jena U, Das KC, Kastner JR (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–6229CrossRefPubMedGoogle Scholar
  3. 3.
    Duan P, Savage PE (2011) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50:52–61CrossRefGoogle Scholar
  4. 4.
    Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225CrossRefPubMedGoogle Scholar
  5. 5.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefPubMedGoogle Scholar
  6. 6.
    Borowitzka MA (2013) Algae for biofuels and energy: species and strain selection. Dev Appl Phycol 5:77–89Google Scholar
  7. 7.
    Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzym Microb Technol 8:194–204CrossRefGoogle Scholar
  8. 8.
    Alba LG, Torri C, Samori C, van der Spek J, Fabbri D, Kersten SR et al (2011) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26:642–657CrossRefGoogle Scholar
  9. 9.
    Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857CrossRefGoogle Scholar
  10. 10.
    Biller P, Riley R, Ross AB (2011) Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresour Technol 102:4841–4848CrossRefPubMedGoogle Scholar
  11. 11.
    Zou S, Wu Y, Yang M, Li C, Tong J (2009) Thermochemical Catalytic Liquefaction of the Marine Microalgae Dunaliella tertiolecta and Characterization of Bio-oils. Energy Fuel 23:3753–3758CrossRefGoogle Scholar
  12. 12.
    Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67CrossRefPubMedGoogle Scholar
  13. 13.
    Zou S, Wu Y, Yang M, Li M, Tong J (2010) Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy & Environ Sci 3:1073–1078CrossRefGoogle Scholar
  14. 14.
    Torri C, Garcia Alba L, Samorì C, Fabbri D, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuel 26:658–671CrossRefGoogle Scholar
  15. 15.
    Anderson R (2005) Algal Culturing Techniques. Elsevier Academic Press, CaliforniaGoogle Scholar
  16. 16.
    Quinn JC, Yates T, Douglas N, Weyer K, Butler J, Bradley TH et al (2012) Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol 117:164–171CrossRefPubMedGoogle Scholar
  17. 17.
    Reddy H, Muppaneni T, Rastegary J, Shirazi S, Ghassemi A, Deng S (2013) ASI: Hydrothermal extraction and characterization of bio-crude oils from wet chlorella sorokiniana and dunaliella tertiolecta. Environ Prog Sustainable Energy 32:910–915CrossRefGoogle Scholar
  18. 18.
    Sudasinghe N, Dungan B, Lammers P, Albrecht K, Elliott D, Hallen R et al (2014) High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel 119:47–56CrossRefGoogle Scholar
  19. 19.
    Sudasinghe N, CJ R, Hallen R, Olarte M, Schmidt A, Schaub T (2014) Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two-dimensional NMR spectroscopy and FT-ICR mass spectrometry. Fuel 137:60–69CrossRefGoogle Scholar
  20. 20.
    Kendrick E (1963) A mass scale based on CH,= 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154CrossRefGoogle Scholar
  21. 21.
    Holguin OF, Schaub TM (2013) Characterization of microalgal lipid feedstock by direct-infusion FT-ICR mass spectrometry. Algal Res 2:43–50CrossRefGoogle Scholar
  22. 22.
    Reddy H, Muppaneni T, Sun Y, Li Y, Ponnusamy S, Patil P et al (2014) Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 133:73–81CrossRefGoogle Scholar
  23. 23.
    Campos H, Boeing WJ, Dungan BN, Schaub T (2014) Cultivating the marine microalga nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy 66:301–307CrossRefGoogle Scholar
  24. 24.
    Fournier V, Deataillats F, Juaneda P, Dionisi F, Lambelet P, Sebedio JL et al (2006) Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur J Lipid Sci Technol 108:33–42CrossRefGoogle Scholar
  25. 25.
    Rampen SW, Willmott V, Kim JH, Uliana E, Mollenhauer G, Schefub E et al (2012) Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim Cosmochim Acta 84:204–216CrossRefGoogle Scholar
  26. 26.
    Damste JSS, Rampen SW, Irene W, Rijpstra C, Abbas B, Muyzer G et al (2003) A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: Indicators for high-nutrient conditions. Geochim Cosmochim Acta 67:1339–1348CrossRefGoogle Scholar
  27. 27.
    Yunping X, Simoneit BRT, Jaffe R (2007) Occurrence of long-chain n-alkenols, diols, keto-ols and sec-alkanols in a sediment core from a hypereutrophic, freshwater lake. Org Geochem 38:870–883CrossRefGoogle Scholar
  28. 28.
    Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380CrossRefPubMedGoogle Scholar
  29. 29.
    Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1992) C30-C32 alkyl diois and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org Geochem 18:131–138CrossRefGoogle Scholar
  30. 30.
    Zhang T, Zhang L, Zhou Y, Wei Q, Chung KH, Zhao S et al (2013) Transformation of nitrogen compounds in deasphalted oil hydrotreating: characterized by electrospray ionization fourier transform-ion cyclotron resonance Mass spectrometry. Energy Fuel 27:2952–2959CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nilusha Sudasinghe
    • 1
  • Harvind Reddy
    • 2
    • 4
  • Nicholas Csakan
    • 3
    • 5
  • Shuguang Deng
    • 2
  • Peter Lammers
    • 3
    • 5
  • Tanner Schaub
    • 1
  1. 1.Chemical Analysis and Instrumentation Laboratory, College of Agricultural, Consumer and Environmental SciencesNew Mexico State UniversityLas CrucesUSA
  2. 2.Department of Chemical and Materials EngineeringNew Mexico State UniversityLas CrucesUSA
  3. 3.Energy Research LaboratoryNew Mexico State UniversityLas CrucesUSA
  4. 4.Tucker Energy Services, Inc.McAlesterUSA
  5. 5.Arizona Center for Algal Technology and InnovationArizona State UniversityTempeUSA

Personalised recommendations