BioEnergy Research

, Volume 8, Issue 4, pp 1714–1734 | Cite as

Evaluation of Microalgae Biofuel Production Potential and Cultivation Sites Using Geographic Information Systems: A Review

  • B. Sharma
  • E. Brandes
  • A. Khanchi
  • S. Birrell
  • E. Heaton
  • F. E. Miguez


Geographic Information System (GIS) tools have been used to strategically locate bioenergy facilities and optimize the relationship between biomass supply and demand, aiming to minimize overall fuel production costs. Microalgae, also termed third generation bioenergy feedstocks, are discussed for their potential to meet future energy demands. This study reviews literature on GIS applications to locate algae cultivation sites and estimate algae biofuel potential. To highlight the diversity of results, a quantitative comparison for the US studies is presented. We found two major assumptions that primarily limited the algae biofuel production potential estimates: (1) the production technology (open pond or photobioreactor), and (2) the number and type of resources considered, such as land type, CO2, water source, water quality, etc. All studies used binary (a location is either unsuitable or suitable) suitability models to determine areas for algae production. Most studies considered water, land, and CO2 resources, while some also accounted for infrastructure, soil properties, and work force requirements. We found that potential cultivation area in the USA is most sensitive to the constraints of CO2 availability and land cost. This review explains the wide range of algal biofuel potential estimates (from 0.09 to over 600 billion L yr−1) by identifying underlying assumptions, methodologies, and data. The highly variable outputs indicate the need for a comprehensive analysis of different criteria individually and in combination to estimate realistic biofuel potential. The results suggest that with models becoming increasingly detailed in considering resources and conversion/production technologies, further decrease in estimated theoretical production potential is expected under available technology.


Microalgae Biofuel Geographic Information Systems Spatial analysis Biofuel potential 

Supplementary material

12155_2015_9623_MOESM1_ESM.docx (20 kb)
ESM 1(DOCX 19 kb)


  1. 1.
    Tilman T, Socolow R, Foley J, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment. Science 325(5938):270–271. doi:10.1126/science.1177970 CrossRefPubMedGoogle Scholar
  2. 2.
    Elliott J, Sharma B, Best N, Glotter M, Dunn JB, Foster I et al (2014) A spatial modeling framework to evaluate domestic biofuel-induced potential land use changes and emissions. Environ Sci Technol 48(4):2488–2496. doi:10.1021/es404546r PubMedGoogle Scholar
  3. 3.
    Calvert K (2011) Geomatics and bioenergy feasibility assessments: taking stock and looking forward. Renew Sust Energ Rev 15(2):1117–1124. doi:10.1016/j.rser.2010.11.014 CrossRefGoogle Scholar
  4. 4.
    Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16. doi:10.1016/j.biortech.2010.06.032 CrossRefPubMedGoogle Scholar
  5. 5.
    Roesijadi G, Coleman AM, Judd C, Van Cleve B, Thom RM, Buenau KE et al (2011) Macroalgae analysis. US Department for energy, RichlandGoogle Scholar
  6. 6.
    Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6(12):3765–3779. doi:10.1039/c3ee24241b CrossRefGoogle Scholar
  8. 8.
    John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193. doi:10.1016/j.biortech.2010.06.139 CrossRefPubMedGoogle Scholar
  9. 9.
    Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Laboratory, RichlandCrossRefGoogle Scholar
  10. 10.
    Algae Biomass Organization (2014) Commercial Production. Available: Accessed 14 April 2014
  11. 11.
    Sarkar A (2007) GIS applications in logistics: a literature review. U.S. SBA Grant No. SBAHQ-06-1-0046:1-11Google Scholar
  12. 12.
    Gürder F, Yılmaz Y (2012) Geographic information systems in strategic decision making in logistics companies. Int J Bus Soc Res 2(4):76–86Google Scholar
  13. 13.
    Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170. doi:10.1016/j.enconman.2010.06.055 CrossRefGoogle Scholar
  14. 14.
    Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749. doi:10.1016/j.enconman.2010.06.010 CrossRefGoogle Scholar
  15. 15.
    Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702CrossRefPubMedGoogle Scholar
  16. 16.
    Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sust Energ Rev 30:1035–1046. doi:10.1016/j.rser.2013.11.003 CrossRefGoogle Scholar
  17. 17.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. doi:10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  18. 18.
    Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840. doi:10.1016/j.enconman.2009.03.001 CrossRefGoogle Scholar
  20. 20.
    Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555. doi:10.1016/j.apenergy.2010.12.012 CrossRefGoogle Scholar
  21. 21.
    Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34. doi:10.1016/j.biortech.2010.06.057 CrossRefPubMedGoogle Scholar
  22. 22.
    Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410. doi:10.1016/j.apenergy.2010.12.014 CrossRefGoogle Scholar
  23. 23.
    Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42. doi:10.1016/j.biortech.2010.06.158 CrossRefPubMedGoogle Scholar
  24. 24.
    Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351. doi:10.1016/j.copbio.2011.10.013 CrossRefPubMedGoogle Scholar
  25. 25.
    Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593. doi:10.1016/j.rser.2010.09.018 CrossRefGoogle Scholar
  26. 26.
    Ribeiro LA, Silva PP (2013) Surveying techno-economic indicators of microalgae biofuel technologies. Renew Sust Energ Rev 25:89–96. doi:10.1016/j.rser.2013.03.032 CrossRefGoogle Scholar
  27. 27.
    Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energy 36(1):158–162. doi:10.1016/j.renene.2010.06.016 CrossRefGoogle Scholar
  28. 28.
    Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286. doi:10.1016/j.copbio.2010.03.005 CrossRefPubMedGoogle Scholar
  30. 30.
    Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610. doi:10.1016/j.rser.2010.06.014 CrossRefGoogle Scholar
  31. 31.
    Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17. doi:10.1016/j.biortech.2010.06.035 CrossRefPubMedGoogle Scholar
  32. 32.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4). doi: 10.1371/journal.pmed.1000097
  33. 33.
    EPA (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact AnalysisGoogle Scholar
  34. 34.
    Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47. doi: 10.1029/2010wr009966
  35. 35.
    Quinn JC, Catton K, Wagner N, Bradley TH (2011) Current large-scale us biofuel potential from microalgae cultivated in photobioreactors. Bioenergy Res 5(1):49–60. doi:10.1007/s12155-011-9165-z CrossRefGoogle Scholar
  36. 36.
    Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2012) An assessment of land availability and price in the coterminous United States for conversion to algal biofuel production. Biomass Bioenergy 47:483–497. doi:10.1016/j.biombioe.2012.09.060 CrossRefGoogle Scholar
  37. 37.
    Quinn JC, Catton KB, Johnson S, Bradley TH (2013) Geographical assessment of microalgae biofuels potential incorporating resource availability. Bioenergy Res 6(2):591–600. doi:10.1007/s12155-012-9277-0 CrossRefGoogle Scholar
  38. 38.
    Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States. Environ Sci Technol 47(9):4840–4849. doi:10.1021/Es304135b CrossRefPubMedGoogle Scholar
  39. 39.
    Venteris ER, McBride RC, Coleman AM, Skaggs RL, Wigmosta MS (2014) Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure. Environ Sci Technol 48(6):3559–3566. doi:10.1021/es4045488 CrossRefPubMedGoogle Scholar
  40. 40.
    Orfield ND, Keoleian GA, Love NG (2014) A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization. Biomass Bioenergy 63:76–85. doi:10.1016/j.biombioe.2014.01.047 CrossRefGoogle Scholar
  41. 41.
    Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.02.001 Google Scholar
  42. 42.
    Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) Regional algal biofuel production potential in the coterminous United States as affected by resource availability trade-offs. Algal Res 5:215–225. doi:10.1016/j.algal.2014.02.002 CrossRefGoogle Scholar
  43. 43.
    Chiu YW, Wu M (2013) Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels Bioprod Bioref 7(4):406–415. doi:10.1002/bbb.1397 CrossRefGoogle Scholar
  44. 44.
    Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, BerkeleyGoogle Scholar
  45. 45.
    Fortier M-OP, Sturm BSM (2012) Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants. Environ Sci Technol 46(20):11426–11434. doi:10.1021/es302127f CrossRefPubMedGoogle Scholar
  46. 46.
    Bennett MC, Turn SQ, Chan WY (2014) A methodology to assess open pond, phototrophic, algae production potential: a Hawaii case study. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.03.016 Google Scholar
  47. 47.
    Klise GT, Roach JD, Passell HD (2011) A study of algal biomass potential in selected Canadian regions. Sandia National Laboratories, AlbuquerqueGoogle Scholar
  48. 48.
    Borowitzka MA, Boruff BJ, Moheimani NR, Pauli N, Cao Y, Smith H (2012) Identification of the optimum sites for industrial-scale microalgae biofuel production in WA using a GIS model. The Centre for Research into Energy for Sustainable Transport, Murdoch University & University of Western AustraliaGoogle Scholar
  49. 49.
    Prasad P, Pullar D, Pratt S (2014) Facilitating access to the algal economy: mapping waste resources to identify suitable locations for algal farms in Queensland. Resour Conserv Recycl 86:47–52. doi:10.1016/j.resconrec.2014.01.008 CrossRefGoogle Scholar
  50. 50.
    Geertman S, Stillwell J (2002) Planning support systems in practice. Springer, GermanyGoogle Scholar
  51. 51.
    Olofsson M, Lamela T, Nilsson E, Bergé JP, Pino VD, Uronen P et al (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592. doi:10.3390/en5051577 CrossRefGoogle Scholar
  52. 52.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001 CrossRefPubMedGoogle Scholar
  53. 53.
    Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531. doi:10.1016/j.apenergy.2011.04.018 CrossRefGoogle Scholar
  54. 54.
    RFS (2014) Renewable Fuel Standard. Available: Accessed 14 April 2014
  55. 55.
    ESRI, ArcGIS Desktop, ed. Redlands, CA: Environmental Systems Research InstituteGoogle Scholar
  56. 56.
    Murphy CF (2010) Analysis of innovative feedstock sources and production technologies for renewable fuels: algal oil biodiesel. University of Texas, AustinGoogle Scholar
  57. 57.
    Sudhakar K, Premalatha M (2012) Theoretical assessment of algal biomass potential for carbon mitigation and biofuel production. Iran J Energy Environ 3(3):232–240Google Scholar
  58. 58.
    Nicks AD, Gander GA (1994) Cligen -A weather generator for climate inputs to water-resource and other models. Computers in Agriculture 1994- Proceedings of the 5th International Conference:903-909Google Scholar
  59. 59.
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820. doi:10.1021/bp070371k PubMedGoogle Scholar
  60. 60.
    Richardson JW, Outlaw JL, Allison M (2010) The economics of microalgae oil. AgBioforum 13(2):119–130Google Scholar
  61. 61.
    Oilgae (2014) Capture of CO2 emissions using algae. Available: Accessed 10 June 2014
  62. 62.
    Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165. doi:10.1016/j.biortech.2010.07.017 CrossRefPubMedGoogle Scholar
  63. 63.
    National Research Council (2012) Sustainable development of algal biofuels in the United States. Washington, DC, USGoogle Scholar
  64. 64.
    Beal CM, Stillwell AS, King CW, Cohen SM, Berberoglu H, Bhattarai RP et al (2012) Energy return on investment for algal biofuel production coupled with wastewater treatment. Water Environ Res 84(9):19ppCrossRefGoogle Scholar
  65. 65.
    Clean Air Task Force (2013) The status of algal biofuel development. Available: Accessed
  66. 66.
    Mu D, Mi M, Krohn B, Mullins KA, Ruan R, Hill J (2014) Life cycle environmental impacts of wastewater-based algal biofuels. Environ Sci Technol 48(19):11696–11704. doi:10.1021/es5027689 CrossRefPubMedGoogle Scholar
  67. 67.
    Ahmad T. Spatial data quality. Available: Accessed 11 June 2014
  68. 68.
    Data quality and uncertainty in GIS. Available: Accessed 2 June 2014
  69. 69.
    Gurney KR, Mendoza D, Zhou Y, Fischer M, Miller C, Geethakumar S, et al (2009) The Vulcan Project: high resolution fossil fuel combustion CO2 emissions fluxes for the United States. Environ Sci Technol 43. doi: 10.1021/es900806c
  70. 70.
    Environmental Protection Agency (2010) eGRID: The Emissions & Generation Resource Integrated Database. Available: Accessed 25 August 2014
  71. 71.
    The National Carbon Sequestration Database and Geographic Information System (2012) CO2 stationary source. Available: Accessed 24 August 2014
  72. 72.
    Store R, Jokimäki J (2003) A GIS-based multi-scale approach to habitat suitability modeling. Ecol Model 169(1):1–15. doi:10.1016/S0304-3800(03)00203-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. Sharma
    • 1
  • E. Brandes
    • 1
  • A. Khanchi
    • 2
  • S. Birrell
    • 2
  • E. Heaton
    • 1
  • F. E. Miguez
    • 1
  1. 1.Department of AgronomyIowa State UniversityAmesUSA
  2. 2.Department of Agricultural and Biosystems EngineeringIowa State UniversityAmesUSA

Personalised recommendations