BioEnergy Research

, Volume 8, Issue 3, pp 1117–1135 | Cite as

Black Locust as a Bioenergy Feedstock: a Review

  • Kaitlin C. Straker
  • Lauren D. Quinn
  • Thomas B. Voigt
  • D. K. Lee
  • Gary J. Kling
Article

Abstract

Short rotation woody bioenergy crops (SRWC) could contribute a substantial portion of the biomass required to meet federal mandates and offset carbon emissions. One SRWC with strong bioenergy potential is black locust (Robinia pseudoacacia L.), planted extensively for wood and energy applications globally, but under-studied in its native US. This member of the Fabaceae family can fix nitrogen, tolerate stress, and sequester carbon while generating biomass yields up to 14 Mg ha-1 yr-1. This article offers a comprehensive state-of-the-art review of production practices, biomass and energy yield estimates, environmental risks and benefits, and economic considerations for this promising feedstock.

Keywords

Robinia pseudoacacia Black locust Feedstocks Plantations Chemical composition Yield 

References

  1. 1.
    United States Congress (2007) Energy independence and security act of 2007. Title II — Subtitle A — Renewable fuel standard. https://www.govtrack.us/congress/bills/110/hr6/text. Accessed 23 Dec 14
  2. 2.
    Turner JA (1999) A realizable renewable energy future. Science 285:687PubMedCrossRefGoogle Scholar
  3. 3.
    Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270PubMedCrossRefGoogle Scholar
  4. 4.
    Drew A, Zsuffa L, Mitchell C (1987) Terminology relating to woody plant biomass and its production. Biomass 12:79CrossRefGoogle Scholar
  5. 5.
    Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol-Plant 45:619PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Quinn LD, Straker KC, Guo J, Kim S, Thapa S, Kling G, Lee DK, Voigt TB (2015) Selecting stress tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenergy Res. doi:10.1007/s12155-014-9557-y
  7. 7.
    Keresztesi B (1980) The black locust. Unasylva 32:23Google Scholar
  8. 8.
    Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silvatica et Lignaria Hungarica 4:127Google Scholar
  9. 9.
    Rédei K, Csiha I, Keseru Z (2011) Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. Acta Silvatica & Lignaria Hungarica 7:125Google Scholar
  10. 10.
    Rédei K, Csiha I, Keseru Z, Vegh AK, Gyori J (2011) The silviculture of black locust (Robinia pseudoacacia L.) in Hungary: a review. Seefor 2:101Google Scholar
  11. 11.
    Walker L (1997) Forests — a naturalist’s guide to woodland trees. University of Texas Press, Austin, TXGoogle Scholar
  12. 12.
    Qiu L, Zhang X, Cheng J, Yin X (2010) Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil 332:207CrossRefGoogle Scholar
  13. 13.
    Wang Y-L, Liu G-B, Kume T, Otsuki K, Yamanaka N, Du S (2010) Estimating water use of a black locust plantation by the thermal dissipation probe method in the semiarid region of Loess Plateau, China. J For Res 15:241CrossRefGoogle Scholar
  14. 14.
    Ussiri D, Lal R, Jacinthe P (2006) Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio. Soil Sci Soc Am J 70:1797CrossRefGoogle Scholar
  15. 15.
    Quinkenstein A, Boehm C, Matos E d S, Freese D, Huettl RF (2011) In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer, New York, NY, pp 201–216CrossRefGoogle Scholar
  16. 16.
    Matos ES, Freese D, Böhm C, Quinkenstein A, Hüttl RF (2012) Organic matter dynamics in reclaimed lignite mine soils under Robinia pseudoacacia L plantations of different ages in Germany. Commun Soil Sci Plan 43:745–755Google Scholar
  17. 17.
    Evans DM, Zipper CE, Burger JA, Strahm BD, Villamagna AM (2013) Reforestation practice for enhancement of ecosystem services on a compacted surface mine: path toward ecosystem recovery. Ecol Eng 51:16CrossRefGoogle Scholar
  18. 18.
    Keresztesi B (1988) The black locust. Forestry Monograph Series of the Agricultural Science Department of the Hungarian Academy of Sciences. Akademiai Kiado, Budapest, HungaryGoogle Scholar
  19. 19.
    Brigden M (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 21–32Google Scholar
  20. 20.
    US Forest Service (1980) Trees for reclamation: black locust (Robinia pseudoacacia). US Department of Agriculture Forest Service, Broomall, PAGoogle Scholar
  21. 21.
    DeGomez T, Wagner MR (2001) Culture and use of black locust. Horttechnology 11:279Google Scholar
  22. 22.
    Huntley JC (1990) In: Burns R, Honkala B (eds) Silvics of North America: 2. Hardwoods. Agricultural handbook 654, vol 2. US Department of Agriculture, Forest Service, Washington, DC, pp 755–761Google Scholar
  23. 23.
    Hanover J (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 32–38Google Scholar
  24. 24.
    Gilman EF, Watson DG (1994) Robinia pseudoacacia — black locust. United States Forest Service Fact Sheet ST-570. http://hort.ifas.ufl.edu/database/documents/pdf/tree_fact_sheets/robpsea.pdf. Accessed 27 August 2014
  25. 25.
    Surles S, Hamrick J, Bongarten B (1990) Mating systems in open-pollinated families of black locust (Robinia pseudoacacia). Silvae Genet 39:35Google Scholar
  26. 26.
    Motta R, Nola P, Berretti R (2009) The rise and fall of the black locust (Robinia pseudoacacia L.) in the “Siro Negri” forest reserve (Lombardy, Italy): lessons learned and future uncertainties. Ann For Sci 66:410CrossRefGoogle Scholar
  27. 27.
    Zhang X-Q, Liu J, Welham CV, Liu C-C, Li D-N, Chen L, Wang R-Q (2006) The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora-Morphology, Distrib, Funct Ecol Plants 201:547CrossRefGoogle Scholar
  28. 28.
    Dawson J, Vogel C, Johnsen K (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 32–38Google Scholar
  29. 29.
    Mierzwa B, Wdowiak-Wróbel S, Kalita M, Gnat S, Małek W (2010) Insight into the evolutionary history of symbiotic genes of Robinia pseudoacacia rhizobia deriving from Poland and Japan. Arch Microbiol 192:341PubMedCrossRefGoogle Scholar
  30. 30.
    Batzli JM, Graves WR, van Berkum P (1992) Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58:2137Google Scholar
  31. 31.
    Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33:269PubMedCrossRefGoogle Scholar
  32. 32.
    Noh NJ, Son Y, Koo JW, Seo KW, Kim RH, Lee YY, Yoo KS (2010) Comparison of nitrogen fixation for north-and south-facing Robinia pseudoacacia stands in central Korea. J Plant Biol 53:61CrossRefGoogle Scholar
  33. 33.
    Liu G, Deng T (1991) Mathematical model of the relationship between nitrogen-fixation by black locust and soil conditions. Soil Biol Biochem 23:1CrossRefGoogle Scholar
  34. 34.
    Cuno JB (1930) Utilization of black locust, vol 131. US Department of Agriculture, Washington, DCGoogle Scholar
  35. 35.
    Rédei K, Veperdi I, Tome M, Soares P (2010) Black locust (Robinia pseudoacacia L.) short-rotation energy crops in Hungary: a review. Silva Lusitana 18:217Google Scholar
  36. 36.
    Kistler M, Schmidl C, Padouvas E, Giebl H, Lohninger J, Ellinger R, Bauer H, Puxbaum H (2012) Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmos Environ 51:86CrossRefGoogle Scholar
  37. 37.
    Rédei K, Osvath-Bujtas Z, Balla I (2001) Propagation methods for black locust (Robinia pseudoacacia L.) improvement in Hungary. J For Res 12:215CrossRefGoogle Scholar
  38. 38.
    Baldelli C (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 237–242Google Scholar
  39. 39.
    Dini-Papanastasi O (2008) Effects of clonal selection on biomass production and quality in Robinia pseudoacacia var monophylla Carr. For Ecol Manag 256:849CrossRefGoogle Scholar
  40. 40.
    Böhm C, Quinkenstein A, Freese D, Hüttl R (2011) Assessing the short rotation woody biomass production on marginal post-mining areas. J For Sci 57:303Google Scholar
  41. 41.
    Grünewald H, Brandt BK, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319CrossRefGoogle Scholar
  42. 42.
    Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. BioEnergy Res 2:123CrossRefGoogle Scholar
  43. 43.
    Benčat T (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, pp 32–38Google Scholar
  44. 44.
    Jung SC, Matsushita N, Wu BY, Kondo N, Shiraishi A, Hogetsu T (2009) Reproduction of a Robinia pseudoacacia population in a coastal Pinus thunbergii windbreak along the Kujukurihama Coast, Japan. J For Res 14:101CrossRefGoogle Scholar
  45. 45.
    Lee CS, Cho HJ, Yi H (2004) Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. For Ecol Manag 189:281CrossRefGoogle Scholar
  46. 46.
    Yanhui W (1992) The hydrological influence of black locust plantations in the loess area of northwest China. Hydrol Process 6:241CrossRefGoogle Scholar
  47. 47.
    Wang B, Xue S, Liu GB, Zhang GH, Li G, Ren ZP (2012) Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China. Catena 92:186CrossRefGoogle Scholar
  48. 48.
    McAlister R (1971) Black locust (Robinia pseudoacacia). US Department of Agriculture Forest Service, American Woods-FS-244, Revised Jan 1971Google Scholar
  49. 49.
    Smith RM (1942) Some effects of black locusts and black walnuts on southeastern Ohio pastures. Soil Sci 53:385CrossRefGoogle Scholar
  50. 50.
    Chang CS, Bongarten B, Hamrick J (1998) Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. J Plant Res 111:17CrossRefGoogle Scholar
  51. 51.
    Lian C, Hogetsu T (2002) Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual‐supression‐PCR technique. Mol Ecol Notes 2:211Google Scholar
  52. 52.
    Hanover JW, Mebrathu T, Bloese P (1991) Genetic improvement of black locust: a prime agroforestry species. For Chron 67:227CrossRefGoogle Scholar
  53. 53.
    Bloese P, Hanover J, Bongarten B (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 32–38Google Scholar
  54. 54.
    Bongarten B (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 78–97Google Scholar
  55. 55.
    Shu QY, Liu GS, Qi DM, Chu CC, Liu J, Li HJ (2003) An effective method for axillary bud culture and RAPD analysis of cloned plants in tetraploid black locust. Plant Cell Rep 22:175PubMedCrossRefGoogle Scholar
  56. 56.
    Ewald D, Ulrich K, Naujoks G, Schröder M-B (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ Cult (PCTOC) 99:353CrossRefGoogle Scholar
  57. 57.
    Zaragoza C, Munoz-Bertomeu J, Arrillaga I (2004) Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep 22:832PubMedCrossRefGoogle Scholar
  58. 58.
    Bloese P (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 32–38Google Scholar
  59. 59.
    Stringer J (1992) Wood properties of black locust (Robinia pseudoacacia). In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 197–207Google Scholar
  60. 60.
    Mebrahtu T, Layne D, Hanover J, Flore J (1993) Net photosynthesis of black locust seedlings in response to irradiance, temperature, and CO2. Photosynthetica 28:45Google Scholar
  61. 61.
    Mebrahtu T, Hanover J (1989) Heritability and expected gain estimates for traits of black locust in Michigan. Silvae Genetica 38:125Google Scholar
  62. 62.
    Mebrahtu T, Hanover JW (1991) Family variation in gas exchange, growth and leaf traits of black locust half-sib families. Tree Physiol 8:185PubMedCrossRefGoogle Scholar
  63. 63.
    Keresztesi B (1983) Breeding and cultivation of black locust, Robinia pseudoacacia, in Hungary. For Ecol Manag 6:217CrossRefGoogle Scholar
  64. 64.
    Grupa R, Tylkowski T (2010) Effectiveness of pre-sowing scarification methods of black locust seeds. Sylwan 1:33Google Scholar
  65. 65.
    Brown J H (1973) Site factors and seeding methods affecting germination and survival of tree species direct-seeded on surface-mined areas. West Virginia University Agricultural Experiment Station Bulletin, vol 620. Morgantown, WVGoogle Scholar
  66. 66.
    Mattoon W (1937) Growing black locust trees. US Department of Agriculture Farmers Bulletin, no. 1628, Washington, DC, Issued May 1930, Revised May 1937Google Scholar
  67. 67.
    Meginnis HG (1937) Sulphuric acid treatment to increase germination of black locust seed. US Department of Agriculture, Circular no. 453, Washington, DC, Nov 1937Google Scholar
  68. 68.
    Brown JH, Tryon E (1960) Establishment of seeded black locust on spoil banks. West Virginia University Agricultural Experiment Station Bulletin, vol 440. Morgantown, WVGoogle Scholar
  69. 69.
    Gruber K, Hanover J (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 126–135Google Scholar
  70. 70.
    Rédei K, Osvath-Bujtas Z, Balla I (2002) Clonal approaches to growing black locust (Robinia pseudoacacia) in Hungary: a review. Forestry 75:547CrossRefGoogle Scholar
  71. 71.
    Rédei K, Osvath-Bujtas Z, Veperdi I (2006) Black locust (Robinia pseudoacacia L.) clonal seed orchards in Hungary. Silva Balcanica 7:63Google Scholar
  72. 72.
    Chalupa V (1983) In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biologia Plantarum 25:305CrossRefGoogle Scholar
  73. 73.
    Chalupa V (1992) Tissue culture propagation of black locust. In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 115–125Google Scholar
  74. 74.
    Barghchi M (1987) Mass clonal propagation in vitro of Robinia pseudoacacia L. (black locust) cv. Jaszkiseri. Plant Sci 53:183CrossRefGoogle Scholar
  75. 75.
    Han K-H, Keathley DE, Gordon MP (1993) Cambial tissue culture and subsequent shoot regeneration from mature black locust (Robinia pseudoacacia L.). Plant Cell Reports 12:185PubMedCrossRefGoogle Scholar
  76. 76.
    Swamy S, Puri S, Kanwar K (2002) Propagation of Robinia pseudoacacia Linn and Grewia optiva Drummond from rooted stem cuttings. Agrofor Syst 55:231CrossRefGoogle Scholar
  77. 77.
    Tiefenbacher H (1991) Short rotation forestry in Austria. Bioresource Technol 35:33CrossRefGoogle Scholar
  78. 78.
    Gong M, Tang M, Chen H, Zhang Q, Xu H, Zheng C (2012) Effects of Glomus mosseae and Rhizobium on the growth of black locust seedlings and the quality of weathered soft rock soils in the Loess Plateau, China. Ann Microbiol 62:1579CrossRefGoogle Scholar
  79. 79.
    McIntyre A (1929) Black locust in Pennsylvania. The Pennsylvania State College School of Agriculture — Agricultural Experiment Station, no. 236, State College, PN, Feb 1929Google Scholar
  80. 80.
    Ware L (1935) The black locust in Alabama. Agricultural Experiment Station of the Alabama Polytechnic Institute, no. 73. Auburn, ALGoogle Scholar
  81. 81.
    Rédei K (1992) Management of black locust stands in Hungary In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 38-43Google Scholar
  82. 82.
    Rédei K, Meilby H (2009) Effect of thinning on the diameter increment in black locust (Robinia pseudoacacia L.) stands. Acta Silvatica Lignaria Hungarica 5:63Google Scholar
  83. 83.
    Goggans JF, May JT (1950) Black locust plantations in the Piedmont region of Alabama. Alabama Polytechnic Inst Agr Exp Station 98:1Google Scholar
  84. 84.
    Groninger JW, Zedaker SM, Fredericksen TS (1997) Stand characteristics of inter-cropped loblolly pine and black locust. For Ecol Manag 91:221CrossRefGoogle Scholar
  85. 85.
    Larson M, Schwarz E (1980) Allelopathic inhibition of black locust, red clover, and black alder by six common herbaceous species. For Sci 26:511Google Scholar
  86. 86.
    Clark FB, Hutchinson JG (1989) Central Hardwood Notes. North Central Forest Experiment Station 3.09. US Department of Agriculture Forest ServiceGoogle Scholar
  87. 87.
    Johnsen KH, Bongarten BC (1992) Relationships between nitrogen fixation and growth in Robinia pseudoacacia seedlings: a functional growth‐analysis approach using 15 N. Physiol Plant 85:77CrossRefGoogle Scholar
  88. 88.
    Roberts DR, Zimmerman RW, Stringer JW, Carpenter SB (1983) The effects of combined nitrogen on growth, nodulation, and nitrogen fixation of black locust seedlings. Can J For Res 13:1251CrossRefGoogle Scholar
  89. 89.
    Reinsvold RJ, Pope PE (1987) Combined effect of soil nitrogen and phosphorus on nodulation and growth of Robinia psuedoacacia. Can J For Res 17:964CrossRefGoogle Scholar
  90. 90.
    Johnsen K (1992) Nitrogen fertilization and growth of black locust. In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 184-197Google Scholar
  91. 91.
    Ferrari AE, Wall LG (2007) Nodulation and growth of black locust (Robinia pseudoacacia) on a desurfaced soil inoculated with a local Rhizobium isolate. Biol Fertil Soils 43:471CrossRefGoogle Scholar
  92. 92.
    Tian C, He X, Zhong Y, Chen J (2003) Effect of inoculation with ecto-and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New For 25:125CrossRefGoogle Scholar
  93. 93.
    Baker FS (1950) Principles of silviculture. McGraw-Hill, New YorkGoogle Scholar
  94. 94.
    Boring L, Swank W (1984) The role of black locust (Robinia psuedoacacia) in forest succession. J For Ecol 72:749CrossRefGoogle Scholar
  95. 95.
    Broadfoot W, Williston H (1973) Flooding effects on southern forests. J For 71:584Google Scholar
  96. 96.
    Rédei K (2002) Management of black locust (Robinia pseudoacacia L.) stands in Hungary. J For Res 13:260CrossRefGoogle Scholar
  97. 97.
    van Damme EJ, Peumans WJ (1996) Molecular cloning of two classes of Em-like proteins from the seeds of the leguminous tree Robinia pseudoacacia. Tree Physiol 16:841PubMedCrossRefGoogle Scholar
  98. 98.
    Abdollahi P, Soltani A, Beigi Harchegani H (2011) Evaluation of salinity tolerance in four suitable tree species in urban forestry. Iran J For Poplar Res 19:265Google Scholar
  99. 99.
    Rédei K (2001) The main characteristics of black locust (Robinia pseudoacacia L.). In: Naydenova T, Raev I, Alexandrov A, Rossnev B, Marinov I, Vassilev VD, Tsakov H, Petrova R, Grozeva M, Grigorov G (eds) Study, conservation and utilisation of forest resources. Proceedings of the Third Balkan Scientific Conference, vol I. Sofia, Bulgaria, pp 285–292Google Scholar
  100. 100.
    Coder KD (1999) Tree selection for drought resistance. The University of Georgia School of Forest Resources Extension Publication FOR 99-008, 4/1999. http://warnell.forestry.uga.edu/SERVICE/LIBRARY/for99-008/for99-008.pdf. Accessed 23 April 2014
  101. 101.
    Evans E (2014) Drought tolerant trees. NC State University Horticultural Sciences Cooperative Extension publication. http://www.ces.ncsu.edu/depts/hort/consumer/quickref/trees/droughttolerant.html. Accessed 23 April 2014
  102. 102.
    Zhang Y, Sheng Y, Luo X (2010) Effects of water stress on biomass and photosynthetic characteristics of tetraploid black locust (Robinia pseudoacacia L.) clones. For Res 23:920Google Scholar
  103. 103.
    Smith A (1992) Chemistry of the extractives of the black locust tree. In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, pp 208-217Google Scholar
  104. 104.
    Siminovitch D (1963) Evidence from increase in ribonucleic acid and protein synthesis in autumn for increase in protoplasm during the frost-hardening of black locust bark cells. Can J Bot 41:1301CrossRefGoogle Scholar
  105. 105.
    Siminovitch D, Rheaume B, Pomeroy K, Lepage M (1968) Phospholipid, protein, and nucleic acid increases in protoplasm and membrane structures associated with development of extreme freezing resistance in black locust tree cells. Cryobiology 5:202PubMedCrossRefGoogle Scholar
  106. 106.
    Brown GN, Bixby JA (1975) Soluble and insoluble protein patterns during induction of freezing tolerance in black locust seedlings. Physiologia Plantarum 34:187CrossRefGoogle Scholar
  107. 107.
    Wang ZM, Wang MY, Liu L, Meng FJ (2013) Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14:20299PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Meng F-J, Wang Q-Y, Wang J-Z, Li S-Y, Wang J-J (2008) Salt resistance of tetraploid Robinia pseudoacacia. Zhiwu Shengtai Xuebao 32:654Google Scholar
  109. 109.
    Appleton B, Rudiger EL, Harris R, Sevebeck K, Alleman D, Swanson L (2009) Trees for hot sites. Virginia cooperative extension publication 420-024. http://pubs.ext.vt.edu/430/430-024/430-024_pdf.pdf. Accessed 29 April 2014
  110. 110.
    Tauer CG (2007) Performance of a wide-ranging collection of black locust seed sources in western Oklahoma. Tree Planters’ Notes 52:26Google Scholar
  111. 111.
    Garman H (1915) The locust borer (Cyllene robiniae) and other insect enemies of the black locust. The State Journal Company, Frankfort, KYCrossRefGoogle Scholar
  112. 112.
    Hoffard WH, Anderson RL (1982) A guide to common insects, diseases, and other problems of black locust. US Dept. of Agriculture, Forest Service, Southeastern Area, Forest Pest Management, vol 19. http://hdl.handle.net/2027/umn.31951002913453c. Accessed 3 Mar 2015
  113. 113.
    Hoffard W (1992) Insect pests of black locusts. In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 44-49Google Scholar
  114. 114.
    Galford JR (1984) The locust borer. US Department of Agriculture Forest Service, Forest Insect & Disease Leaflet 71. http://www.na.fs.fed.us/spfo/pubs/fidls/locust/locust.htm. Accessed 27 August 2014
  115. 115.
    Genys JB, Harman DM (1990) Racial diversity of black locust in growth rate and in susceptibility to the locust twig borer. North J Appl For 7:38Google Scholar
  116. 116.
    Berry FH (1945) Effect of site and the locust borer on plantations of black locust in the Duke Forest. J For 43:751Google Scholar
  117. 117.
    Echaves V, Harman D, Harman A (1998) Site quality in relation to damage by locust borer, Megacyllene robiniae Forster, in black locust. J Entomol Sci 33:106Google Scholar
  118. 118.
    Bálint J, Neacsu P, Balog A, Fail J, Vétek G (2010) First record of the black locust gall midge Obolodiplosis robiniae (Haldeman) (Diptera: Cecidomyiidae) in Romania. North-Western J Zool 6:319Google Scholar
  119. 119.
    Pernek M, Matosevic D (2009) Black locust gall midge (Obolodiplosis robiniae), new pest on black locust trees and first record of parasitoid Platygaster robinae in Croatia. Sumarski List 133:157Google Scholar
  120. 120.
    Tóth P, Váňová M, Lukáš J (2009) The distribution of Obolodiplosis robiniae on black locust in Slovakia. J Pest Sci 82:61CrossRefGoogle Scholar
  121. 121.
    Day E, Herbert D (2011) Locust leafminer Coleoptera: Chrysomelidae: Odontota dorsalis (Thunberg). Virginia Tech Cooperative Extension Publication 3101-1528. http://pubs.ext.vt.edu/3101/3101-1528/3101-1528.html. Accessed 27 August 2014
  122. 122.
    Kulfan M (1991) The larvae of leaf-eating insects (Lepidoptera, Hymenoptera) on black locust (Robinia pseudoacacia) in South Slovakia. Biol Plant 46:927Google Scholar
  123. 123.
    Zheng Y, Harman DM, Swartz HJ (2003) Resistance to locust leafminer (Coleoptera: Chrysomelidae) in black locust. J Econ Entomol 96:53PubMedCrossRefGoogle Scholar
  124. 124.
    Dini-Papanastasi O, Aravanopoulos FA (2008) Artificial hybridization between Robinia pseudoacacia L. and R. pseudoacacia var. monophylla Carr. Forestry 81:91CrossRefGoogle Scholar
  125. 125.
    Hargrove W, Crossley D Jr, Seastedt T (1984) Shifts in insect herbivory in the canopy of black locusts, Robinia pseudoacacia, after fertilization. Oikos 43:322CrossRefGoogle Scholar
  126. 126.
    Michalopoulos-Skarmoutsos H, Skarmoutsos G (1999) Pathogenicity of fungi affecting black locust (Robinia pseudoacacia) in Greece. Phytoparasitica 27:239CrossRefGoogle Scholar
  127. 127.
    Chapman G, Buerkle E, Barrows E, Davis R, Dally E (2001) A light and transmission electron microscope study of a black locust tree, Robinia pseudoacacia (Fabaceae), affected by witches’ broom, and classification of the associated phytoplasma. J Phytopathol 149:589CrossRefGoogle Scholar
  128. 128.
    Ren ZG, Lin CL, Li Y, Song CS, Wang XZ, Piao CG, Tian GZ (2014) Comparative molecular analyses of phytoplasmas infecting Sophora japonica cv golden and Robinia pseudoacacia. J Phytopathology 162:98CrossRefGoogle Scholar
  129. 129.
    Kiss L, Balázs E, Salánki K (2009) Characterisation of black locust isolates of peanut stunt virus (PSV) from the Pannon ecoregion show the frequent occurrence of the fourth taxonomic PSV subgroup. Eur J Plant Pathol 125:671CrossRefGoogle Scholar
  130. 130.
    Boine B, Naujoks G, Stauber T (2008) Investigations on influencing plant-associated bacteria in tissue cultures of black locust (Robinia pseudoacacia L.). Plant Cell, Tissue Organ Cult 94:219CrossRefGoogle Scholar
  131. 131.
    Geyer W, Melichar M (1986) Short-rotation forestry research in the United States. Biomass 9:125CrossRefGoogle Scholar
  132. 132.
    Rédei K, Veperdi I, Meilby H (2006) Stand structure and growth of mixed white poplar (Populus alba L.) and black locust (Robinia pseudoacacia L.) plantations in Hungary. Acta Silvatica Lignaria Hungarica 2:23Google Scholar
  133. 133.
    Rédei K (2002) Stand structure and yield of the mixed white poplar and black locust plantations on sandy ridges between the Danube and Tisza rivers in Hungary. J For Res (Harbin) 13:103CrossRefGoogle Scholar
  134. 134.
    Dickmann DI, Steinbeck K, Skinner T (1985) Leaf area and biomass in mixed and pure plantations of sycamore and black locust in the Georgia Piedmont. For Sci 31:509Google Scholar
  135. 135.
    Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54:215Google Scholar
  136. 136.
    Tsonkova P, Boehm C, Quinkenstein A, Freese D (2012) Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agrofor Syst 85:133CrossRefGoogle Scholar
  137. 137.
    Ntayombya P, Gordon A (1995) Effects of black locust on productivity and nitrogen nutrition of intercropped barley. Agrofor Syst 29:239CrossRefGoogle Scholar
  138. 138.
    Feldhake C (2001) Microclimate of a natural pasture under planted Robinia pseudoacacia in Central Appalachia, West Virginia. Agrofor Syst 53:297CrossRefGoogle Scholar
  139. 139.
    Snyder LU, Mueller J, Luginbuhl J, Brownie C (2007) Growth characteristics and allometry of Robinia pseudoacacia as a silvopastoral system component. Agrofor Syst 70:41CrossRefGoogle Scholar
  140. 140.
    Zimmerman RW, Carpenter SB (1980) First year coppice production from a 5-year-old black locust stand on surface mine spoil. University of Kentucky Agricultural Experiment Station Extension Publication No. 80-8-47. http://www.ncrs.fs.fed.us/pubs/ch/ch03/chvolume03page309.pdf. Accessed 31 July 2014
  141. 141.
    Geyer WA (1989) Biomass yield potential of short-rotation hardwoods in the Great Plains. Biomass 20:167CrossRefGoogle Scholar
  142. 142.
    Geyer WA (1993) Influence of environmental factors on woody biomass productivity in the Central Great Plains, USA. Biomass Bioenergy 4:333CrossRefGoogle Scholar
  143. 143.
    Bongarten BC, Huber DA, Apsley DK (1992) Environmental and genetic influences on short-rotation biomass production of black locust (Robinia pseudoacacia L.) in the Georgia Piedmont. For Ecol Manag 55:315CrossRefGoogle Scholar
  144. 144.
    Rédei K, Veperdi I (2009) The role of black locust (Robinia pseudoacacia L.) in establishment of short-rotation energy plantations in Hungary. Int J Horticult Sci 15:41Google Scholar
  145. 145.
    Stolarski MJ, Krzyzaniak M, Szczukowski S, Tworkowski J, Bieniek A (2013) Dendromass derived from agricultural land as energy feedstock. Pol J Environ Stud 22:511Google Scholar
  146. 146.
    Mészáros E, Várhegyi G, Jakab E, Marosvölgyi B (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuel 18:497CrossRefGoogle Scholar
  147. 147.
    Stringer JW, Carpenter SB (1986) Energy yield of black locust biomass fuel. For Sci 32:1049Google Scholar
  148. 148.
    Balat M (2010) Bio-oil production from pyrolysis of black locust (Robinia pseudoacacia) wood. Energy, Explor Exploitation 28:173CrossRefGoogle Scholar
  149. 149.
    Balat M, Balat M (2010) Pyrolysis of black locust wood in the presence of perlite. Energy Sour, Part A: Recover, Utilization, Environ Eff 33:211CrossRefGoogle Scholar
  150. 150.
    Geyer WA, Walawender WP (1994) Biomass properties and gasification behavior of young black locust. Wood Fiber Sci 26:354Google Scholar
  151. 151.
    Geyer W, Bresnan D (1992) In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, M, pp 32–38Google Scholar
  152. 152.
    Garlock RJ, Wong YS, Balan V, Dale BE (2012) AFEX pretreatment and enzymatic conversion of black locust (Robinia pseudoacacia L.) to soluble sugars. BioEnergy Res 5:306CrossRefGoogle Scholar
  153. 153.
    Chow P, Rolfe G (1989) Carbon and hydrogen contents of short-rotation biomass of five hardwood species. Wood Fiber Sci 21:30Google Scholar
  154. 154.
    Klašnja B, Orlović S, Galić Z (2013) Comparison of different wood species as raw materials for bioenergy. SEEFOR (South–East European Forestry) 4:81CrossRefGoogle Scholar
  155. 155.
    González-García S, Moreira MT, Feijoo G, Murphy RJ (2012) Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass Bioenergy 39:378CrossRefGoogle Scholar
  156. 156.
    Chow P, Rolfe GL, Motter WK (1995) Chemical compositions of five 3-year-old hardwood trees. Wood Fiber Sci 27:319Google Scholar
  157. 157.
    Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28:75CrossRefGoogle Scholar
  158. 158.
    Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees-Struct Funct 11:316Google Scholar
  159. 159.
    Putman LJ, Laks PE, Pruner MS (1989) Chemical constituents of black locust bark and their biocidal activity. Holzforschung 43:219CrossRefGoogle Scholar
  160. 160.
    Latorraca JVF, Duenisch O, Koch G (2011) Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. Anais Da Academia Brasileira De Ciencias 83:1059PubMedCrossRefGoogle Scholar
  161. 161.
    Pollet C, Jourez B, Hebert J (2008) Natural durability of black locust (Robinia pseudoacacia L.) wood grown in Wallonia, Belgium. Can J For Res 38:1366CrossRefGoogle Scholar
  162. 162.
    Duenisch O, Richter H-G, Koch G (2010) Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci Technol 44:301CrossRefGoogle Scholar
  163. 163.
    Yang J, Park S, Kamdem DP, Keathley DE, Retzel E, Paule C, Kapur V, Han K-H (2003) Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia. Plant Mol Biol 52:935PubMedCrossRefGoogle Scholar
  164. 164.
    Passialis C, Voulgaridis E, Adamopoulos S, Matsouka M (2008) Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin. Holz als Roh-und Werkstoff 66:395CrossRefGoogle Scholar
  165. 165.
    Yang J, Kamdem DP, Keathley DE, Han K-H (2004) Seasonal changes in gene expression at the sapwood—heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol 24:461PubMedCrossRefGoogle Scholar
  166. 166.
    González-García S, Gasol CM, Moreira MT, Gabarrell X, I Pons JR, Feijoo G (2011) Environmental assessment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. Int J Life Cycle Assess 16:465CrossRefGoogle Scholar
  167. 167.
    Chang R, Fu B, Liu G, Wang S, Yao X (2012) The effects of afforestation on soil organic and inorganic carbon: a case study of the Loess Plateau of China. Catena 95:145CrossRefGoogle Scholar
  168. 168.
    Dzwonko Z, Loster S (1997) Effects of dominant trees and anthropogenic disturbances on species richness and floristic composition of secondary communities in southern Poland. J Appl Ecol 34:861CrossRefGoogle Scholar
  169. 169.
    Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol 174:97CrossRefGoogle Scholar
  170. 170.
    Landgraf D, Wedig S, Klose S (2005) Medium- and short-term available organic matter, microbial biomass, and enzyme activities in soils under Pinus sylvestris L. and Robinia pseudoacacia L. in a sandy soil in NE Saxony, Germany. J Plant Nutr Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 168:193CrossRefGoogle Scholar
  171. 171.
    Von Holle B, Joseph KA, Largay EF, Lohnes RG (2006) Facilitations between the introduced nitrogen-fixing tree, Robinia pseudoacacia, and nonnative plant species in the glacial outwash upland ecosystem of cape cod, MA. Biodivers Conserv 15:2197CrossRefGoogle Scholar
  172. 172.
    Malcolm GM, Bush DS, Rice SK (2008) Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a pine–oak ecosystem. Restor Ecol 16:70CrossRefGoogle Scholar
  173. 173.
    Youkhana A, Idol T (2008) First-year biomass production and soil improvement in Leucaena and Robinia stands under different pollarding systems. J Trop For Sci 20:181Google Scholar
  174. 174.
    Keskin T, Makineci E (2009) Some soil properties on coal mine spoils reclaimed with black locust (Robinia pceudoacacia L.) and umbrella pine (Pinus pinea L.) in Agacli-Istanbul. Environmen Monit Assess 159:407CrossRefGoogle Scholar
  175. 175.
    Eaton WD, Farrell RE Jr (2004) Catabolic and genetic microbial indices, and levels of nitrate, ammonium and organic carbon in soil from the black locust (Robinia pseudoacacia) and tulip poplar (Liriodendron tulipifera) trees in a Pennsylvania forest. Biol Fertil Soils 39:209CrossRefGoogle Scholar
  176. 176.
    Montagnini F, Haines B, Swank WT (1991) Soil-solution chemistry in black locust, pine/mixed-hardwoods and oak/hickory forest stands in the southern Appalachians, USA. For Ecol Manag 40:199CrossRefGoogle Scholar
  177. 177.
    Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue Z, Wang S, Hou Q (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. For Ecol Manag 241:84CrossRefGoogle Scholar
  178. 178.
    Lee YC, Nam JM, Kim JG (2011) The influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate. Plant Soil 341:269CrossRefGoogle Scholar
  179. 179.
    De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, Virzo De Santo A (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1CrossRefGoogle Scholar
  180. 180.
    Wang B, Liu G, Xue S (2012) Effect of black locust (Robinia pseudoacacia) on soil chemical and microbiological properties in the eroded hilly area of China’s Loess Plateau. Environmen Earth Sci 65:597CrossRefGoogle Scholar
  181. 181.
    Brown JH (1973) West Virginia University Agricultural Experiment Station Bulletin, vol. no. 617. Morgantown, WVGoogle Scholar
  182. 182.
    Carpenter SB, Graves DH, Eigel RA (1979) Producing black locust biomass for fuel on southern Appalachian surface mines. Energy Commun 5:101Google Scholar
  183. 183.
    Ashby CW, Vogel WG, Rogers NF (1985) Black locust in the reclamation equation. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Broomall, PAGoogle Scholar
  184. 184.
    Kim KD, Lee EJ (2005) Potential tree species for use in the restoration of unsanitary landfills. Environ Manag 36:1CrossRefGoogle Scholar
  185. 185.
    Yuksek T (2012) The restoration effects of black locust (Robinia pseudoacacia L) plantation on surface soil properties and carbon sequestration on lower hillslopes in the semi-humid region of Coruh Drainage Basin in Turkey. Catena 90:18CrossRefGoogle Scholar
  186. 186.
    Olesniewicz KS, Thomas RB (1999) Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytol 142:133CrossRefGoogle Scholar
  187. 187.
    Feng Z, Dyckmans J, Flessa H (2004) Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia. Tree Physiol 24:323PubMedCrossRefGoogle Scholar
  188. 188.
    Bidini G, Bartocci P, Buratti C, Fantozzi F (2005) The influence of environmental variables and soil characteristics on productivity and fuel quality of black locust plantation in Umbria region (Italy). In: 14th European Biomass Conference, Paris, France, Oct 2005, pp 17–21Google Scholar
  189. 189.
    Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudoacacia into nature reserves and endangered habitats. Biol Conserv 143:382CrossRefGoogle Scholar
  190. 190.
    Monfared SH, Matinizadeh M, Shirvany A, Amiri GZ, Fard RM, Rostami F (2013) Accumulation of heavy metal in Platanus orientalis, Robinia pseudoacacia and Fraxinus rotundifolia. J For Res 24:391CrossRefGoogle Scholar
  191. 191.
    Rashidi F, Jalili A, Kafaki SB, Sagheb-Talebi K, Hodgson J (2012) Anatomical responses of leaves of black locust (Robinia pseudoacacia L.) to urban pollutant gases and climatic factors. Trees-Structure Funct 26:363CrossRefGoogle Scholar
  192. 192.
    Burner DM, Pote D, Ares A (2005) Management effects on biomass and foliar nutritive value of Robinia pseudoacacia and Gleditsia triacanthos f. inermis in Arkansas, USA. Agrofor Syst 65:207CrossRefGoogle Scholar
  193. 193.
    Burner DM, Carrier DJ, Belesky DP, Pote DH, Ares A, Clausen E (2008) Yield components and nutritive value of Robinia pseudoacacia and Albizia julibrissin in Arkansas, USA. Agrofor Syst 72:51CrossRefGoogle Scholar
  194. 194.
    Papanastasis V, Yiakoulaki M, Decandia M, Dini-Papanastasi O (2008) Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim Feed Sci Technol 140:1CrossRefGoogle Scholar
  195. 195.
    Snyder L, Luginbuhl J, Mueller J, Conrad A, Turner K (2007) Intake, digestibility and nitrogen utilization of Robinia pseudoacacia foliage fed to growing goat wethers. Small Rumin Res 71:179CrossRefGoogle Scholar
  196. 196.
    Cheeke P (1992) Black locust forage as an animal feedstuff. In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 252–258Google Scholar
  197. 197.
    Papanastasis VP, Platis PD, Dini-Papanastasi O (1998) Effects of age and frequency of cutting on productivity of Mediterranean deciduous fodder tree and shrub plantations. For Ecol Manag 110:283CrossRefGoogle Scholar
  198. 198.
    Ayers G (1992) Characteristics of black locust as bee forage. In: Hanover J, Miller K, Plesko S (eds) Proceedings: international conference on black locust: biology, culture, utilization. Department of Forestry, Michigan State University, East Lansing, MI, pp 243–251Google Scholar
  199. 199.
    Brinks JS, Lhotka JM, Barton CD, Warner RC, Agouridis CT (2011) Effects of fertilization and irrigation on American sycamore and black locust planted on a reclaimed surface mine in Appalachia. For Ecol Manag 261:640CrossRefGoogle Scholar
  200. 200.
    Laiolo P, Caprio E, Rolando A (2004) Can forest management have season-dependent effects on bird diversity? Biodivers Conserv 13:1925CrossRefGoogle Scholar
  201. 201.
    Beachy BL, Robinson GR (2008) Divergence in avian communities following woody plant invasions in a pine barrens ecosystem. Nat Areas J 28:395CrossRefGoogle Scholar
  202. 202.
    Ford WM, Owen SF, Edwards JW, Rodrigue JL (2006) Robinia pseudoacacia (black locust) as day-roosts of male Myotis septentrionalis (northern bats) on the Fernow Experimental Forest, West Virginia. Northeast Nat 13:15CrossRefGoogle Scholar
  203. 203.
    Quinn LD (2014) In: Quinn LD, Matlaga DP, Barney JN (eds) Bioenergy and biological invasions: ecological, agronomic and policy perspectives on minimising risk. CABI, Oxfordshire, UKGoogle Scholar
  204. 204.
    DAISIE (2013) Robinia pseudoacacia. DAISIE European invasive alien species gateway. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=4190. Accessed 11 June 2013
  205. 205.
    Weber E (2000) Switzerland and the invasive plant species issue. Bot Helv 110:11Google Scholar
  206. 206.
    Lambdon PW, Pysek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarosik V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kuhn I, Marchante H, Perglova I, Pino J, Vila M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101Google Scholar
  207. 207.
    Morimoto J, Kominami R, Koike T (2010) Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia) in a headwater basin in northern Japan. Landsc Ecol Eng 6:193CrossRefGoogle Scholar
  208. 208.
    Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18CrossRefGoogle Scholar
  209. 209.
    Cronk QCB, Fuller JL (1995) Plant invaders: the threat to natural ecosystems. Chapman & Hall, London, UKGoogle Scholar
  210. 210.
    Call LJ, Nilsen ET (2005) Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol 176:275CrossRefGoogle Scholar
  211. 211.
    ISSG Global Invasive Species Database (2005) http://www.issg.org/database/species/ecology.asp?si=572&fr=1&sts=sss&lang=EN. Accessed 01 May 2013
  212. 212.
    Radtke A, Ambrass S, Zerbe S, Tonon G, Fontana V, Ammer C (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For Ecol Manag 291:308CrossRefGoogle Scholar
  213. 213.
    Dibble AC (2003) Use of comparison areas rather than controls in a study of fuels in invaded forests of the Northeast and Mid-Atlantic states. In: Proceedings, Society of American Foresters 2003 National Convention, Bethesda, MD, SAF Publication 04-01, pp 319-324Google Scholar
  214. 214.
    Wieseler S (2005) In: Swearingen J, Morse L, (eds) Plant conservation alliance alien plant working group fact sheets. US National Forest Service, Washington, DC. http://www.nps.gov/plants/alien/fact/rops1.htm. Accessed 20 September 2013
  215. 215.
    Heim J (2013) Vegetation management guideline: black locust (Robinia pseudoacacia L.). Illinois Natural History Survey. http://wwx.inhs.illinois.edu/research/vmg/blocust. Accessed 20 September 2013
  216. 216.
    Akamatsu F, Ide K, Shimano K, Toda H (2011) Nitrogen stocks in a riparian area invaded by N-fixing black locust (Robinia pseudoacacia L.). Landsc Ecol Eng 7:109CrossRefGoogle Scholar
  217. 217.
    Ding W, Wang R, Yuan Y, Liang X, Liu J (2012) Effects of nitrogen deposition on growth and relationship of Robinia pseudoacacia and Quercus acutissima seedlings. Dendrobiology 67:3Google Scholar
  218. 218.
    Peloquin RL, Hiebert RD (1999) The effects of black locust (Robinia pseudoacacia L.) on species diversity and composition of black oak savanna/woodland communities. Nat Areas J 19:121Google Scholar
  219. 219.
    Montagnini F, Haines B, Boring L, Swank W (1986) Nitrification potentials in early successional black locust and in mixed hardwood forest stands in the southern Appalachians, USA. Biogeochemistry 2:197CrossRefGoogle Scholar
  220. 220.
    Williard KW, Dewalle DR, Edwards PJ (2005) Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-Appalachian forested watersheds. Water Air Soil Pollut 160:55CrossRefGoogle Scholar
  221. 221.
    IPANE (2014) Robinia pseudoacacia. Invasive Plant Atlas of New England, http://www.eddmaps.org/ipane/ipanespecies/trees/Robinia_pseudoacacia.htm. Accessed 27 August 2014
  222. 222.
    Nasir H, Iqbal Z, Hiradate S, Fujii Y (2005) Allelopathic potential of Robinia pseudoacacia L. J Chem Ecol 31:2179PubMedCrossRefGoogle Scholar
  223. 223.
    Benesperi R, Giuliani C, Zanetti S, Gennai M, Lippi MM, Guidi T, Nascimbene J, Foggi B (2012) Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers Conserv 21:3555CrossRefGoogle Scholar
  224. 224.
    Nascimbene J, Marini L (2010) Oak forest exploitation and black-locust invasion caused severe shifts in epiphytic lichen communities in Northern Italy. Sci Total Environ 408:5506PubMedCrossRefGoogle Scholar
  225. 225.
    Nascimbene J, Nimis PL, Benesperi R (2012) Mature non-native black-locust (Robinia pseudoacacia L.) forest does not regain the lichen diversity of the natural forest. Sci Total Environ 421:197PubMedCrossRefGoogle Scholar
  226. 226.
    Remes V (2003) Effects of exotic habitat on nesting success, territory density, and settlement patterns in the Blackcap (Sylvia atricapilla). Conserv Biol 17:1127CrossRefGoogle Scholar
  227. 227.
    Wilson A, Shure D (1993) Plant competition and nutrient limitation during early succession in the Southern Appalachian Mountains. Am Midl Nat 129:1CrossRefGoogle Scholar
  228. 228.
    ISSG Global Invasive Species Database (2005) http://www.issg.org/database/species/ecology.asp?si=994&fr=1&sts=sss&lang=EN. Accessed 27 August 2014
  229. 229.
    Annighöfer P, Mölder I, Zerbe S, Kawaletz H, Terwei A, Ammer C (2012) Biomass functions for the two alien tree species Prunus serotina Ehrh and Robinia pseudoacacia L in floodplain forests of Northern Italy. Eur J For Res 131:1619CrossRefGoogle Scholar
  230. 230.
    Linville WR, Betters DR (1997) Short-rotation forest plantations — economic feasibility in eastern Colorado. J Sustain Agric 9:49CrossRefGoogle Scholar
  231. 231.
    Ledin S (1992) The energy forestry production systems. Biomass Bioenergy 2:17CrossRefGoogle Scholar
  232. 232.
    Gasol CM, Brun F, Mosso A, Rieradevall J, Gabarrell X (2010) Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. Energy Policy 38:592CrossRefGoogle Scholar
  233. 233.
    Perlack RD, Ranney JW, Barron WF, Cushman JH, Trimble JL (1986) Short rotation intensive culture for the production of energy feedstocks in the United States — a review of experimental results and remaining obstacles to commercialization. Biomass 9:145CrossRefGoogle Scholar
  234. 234.
    Buchanan G (2010) Increasing feedstock production for biofuels: economic drivers, environmental implications, and the role of research. DIANE Publishing. http://www.esd.ornl.gov/eess/IncreasingBiofuelsFeedstockProduction.pdf. Accessed 18 November 2014
  235. 235.
    Holzmueller EJ, Jose S (2012) Biomass production for biofuels using agroforestry: potential for the North Central Region of the United States. Agrofor Syst 85:305CrossRefGoogle Scholar
  236. 236.
    Quinn LD, Gordon DR, Glaser A, Lieurance D, Flory SL (2014) Bioenergy feedstocks at low risk for invasion in the U.S.: a “white list” approach. Bioenergy Res. doi:10.1007/s12155-014-9503-z Google Scholar
  237. 237.
    Barney JN (2012) Best management practices for bioenergy crops: reducing the invasion risk. Virginia Cooperative Extension Publication PPWS-8P.  Available at: http://hdl.handle.net/10919/47468. Accessed 3 Mar 2015
  238. 238.
    Geyer W (2006) Biomass production in the Central Great Plains USA under various coppice regimes. Biomass Bioenergy 30:778CrossRefGoogle Scholar
  239. 239.
    Raber O (1936) Shipmast locust: a valuble undescribed variety of Robinia pseudoacacia. US Department of Agriculture, no. 379, Washington, DCGoogle Scholar
  240. 240.
    Rédei K, Osvath-Bujtas Z (2002) Yield and management of black locust (Robinia pseudoacacia L.) cultivars in Hungary. In: Naydenova T, Raev I, Alexandrov A, Rossnev B, Marinov I, Vassilev VD, Tsakov H, Petrova R, Grozeva M, Grigorov G (eds) Study, conservation and utilisation of forest resources, vol I, pp 293–300. Proceedings of the Third Balkan Scientific Conference, Sofia, Bulgaria, 2–6 October 2001Google Scholar
  241. 241.
    Hosseini-Nasr M, Rashid A (2003) Thidiazuron-induced high-frequency shoot regeneration from root region of Robinia pseudoacacia L seedlings. Biologia Plantarum 47:593CrossRefGoogle Scholar
  242. 242.
    Meszaros E, Jakab E, Varhegyi G, Szepesvary P, Marosvolgyi B (2004) Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation. J Anal Appl Pyrol 72:317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kaitlin C. Straker
    • 1
  • Lauren D. Quinn
    • 1
  • Thomas B. Voigt
    • 1
  • D. K. Lee
    • 1
  • Gary J. Kling
    • 1
  1. 1.Energy Biosciences InstituteUniversity of Illinois at Urbana ChampaignUrbanaUSA

Personalised recommendations