BioEnergy Research

, Volume 8, Issue 3, pp 1004–1013 | Cite as

Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

  • Jian Shi
  • Kevin W. George
  • Ning Sun
  • Wei He
  • Chenlin Li
  • Vitalie Stavila
  • Jay D. Keasling
  • Blake A. Simmons
  • Taek Soon Lee
  • Seema SinghEmail author


In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.


Mixed feedstock Biomass pellet Biomass pretreatment Isopentenol Simultaneous saccharification and fermentation Ionic liquid Dilute acid Soaking aqueous ammonia 



This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. ABPDU acknowledges the funding support from Office of Biomass Program within the US DOE’s Office of Energy Efficiency and Renewable Energy, and also the funding support from the American Recovery and Reinvestment Act. We acknowledge Vicki S. Thompson and Neal A. Yancey from Idaho National Laboratory for providing biomass feedstocks and Sonny Zhang for lab assistance. We thank Novozymes for the gift of the enzyme mixtures used in this study.

Conflict of Interest

The authors claim no competing interests.

Authors’ Contributions

JS, KG, and NS conducted pretreatment, saccharification, and fermentation experiments. JS and KG conducted data analysis and drafted the manuscript. WH and CL carried out the calorimetric measurements while VS performed pXRD. SS, TSL, JDK, and BAS coordinated and supervised the research and collaborative efforts. All authors read and approved the final manuscript.

Supplementary material

12155_2015_9588_MOESM1_ESM.docx (151 kb)
ESM 1 (DOCX 150 kb)
12155_2015_9588_MOESM2_ESM.docx (182 kb)
ESM 2 (DOCX 181 kb)
12155_2015_9588_MOESM3_ESM.docx (18 kb)
ESM 3 (DOCX 18 kb)


  1. 1.
    Richard TL (2010) Challenges in Scaling Up Biofuels Infrastructure. Science 329(5993):793–796. doi: 10.1126/science.1189139 CrossRefPubMedGoogle Scholar
  2. 2.
    Milbrandt A (2005) A geographic perspective on the current biomass resource availability in the United States. Technical Report: NREL/TP-560-39181Google Scholar
  3. 3.
    Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioproducts Biorefining Bioprod 5(6):683–707. doi: 10.1002/Bbb.324 CrossRefGoogle Scholar
  4. 4.
    Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7):648–654. doi: 10.1016/j.biombioe.2005.01.004 CrossRefGoogle Scholar
  5. 5.
    Theerarattananoon K, Xu F, Wilson J, Staggenborg S, Mckinney L, Vadlani P, Pei Z, Wang D (2012) Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess Biosyst Eng 35(4):615–623CrossRefPubMedGoogle Scholar
  6. 6.
    Ray AE, Hoover AN, Nagle N, Chen X, Gresham GL (2013) Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover under low-and high-solids conditions. Biofuels 4(3):271–284CrossRefGoogle Scholar
  7. 7.
    Pirraglia A, Gonzalez R, Saloni D (2010) Techno-Economical Analysis of Wood Pellets Production for Us Manufacturers. Bioresources 5(4):2374–2390Google Scholar
  8. 8.
    Jacobson JJ, Carnohan S, Ford A, Beall A (2014) Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries. Paper presented at the 2014 International System Dynamics ConferenceGoogle Scholar
  9. 9.
    Iroba KL, Tabil LG, Sokhansanj S, Meda V (2014) Producing durable pellets from barley straw subjected to radio frequency-alkaline and steam explosion pretreatments. Int J Agric Biol Eng 7(3):68–82. doi: 10.3965/j.ijabe.20140703.009 Google Scholar
  10. 10.
    Rijal B, Igathinathane C, Karki B, Yu M, Pryor SW (2012) Combined effect of pelleting and pretreatment on enzymatic hydrolysis of switchgrass. Bioresour Technol 116:36–41. doi: 10.1016/j.biortech.2012.04.054 CrossRefPubMedGoogle Scholar
  11. 11.
    Stelte W, Sanadi AR, Shang L, Holm JK, Ahrenfeldt J, Henriksen UB (2012) Recent Developments in Biomass Pelletization - a Review. Bioresources 7(3):4451–4490Google Scholar
  12. 12.
    Tooyserkani Z, Kumar L, Sokhansanj S, Saddler J, Bi XTT, Lim CJ, Lau A, Melin S (2013) SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets. Bioresour Technol 130:59–68. doi: 10.1016/j.biortech.2012.12.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Nahar N, Pryor SW (2014) Reduced pretreatment severity and enzyme loading enabled through switchgrass pelleting. Biomass Bioenergy 67:46–52. doi: 10.1016/j.biombioe.2014.04.027 CrossRefGoogle Scholar
  14. 14.
    Shi J, Thompson VS, Yancey NA, Stavila V, Simmons BA, Singh S (2013) Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels 4(1):63–72CrossRefGoogle Scholar
  15. 15.
    Guragain YN, Wilson J, Staggenborg S, McKinney L, Wang DH, Vadlani PV (2013) Evaluation of pelleting as a pre-processing step for effective biomass deconstruction and fermentation. Biochem Eng J 77:198–207. doi: 10.1016/j.bej.2013.05.014 CrossRefGoogle Scholar
  16. 16.
    Rijal B, Biersbach G, Gibbons WR, Pryor SW (2014) Effect of Initial Particle Size and Densification on AFEX-Pretreated Biomass for Ethanol Production. Appl Biochem Biotechnol 174(2):845–854. doi: 10.1007/s12010-014-1120-y CrossRefPubMedGoogle Scholar
  17. 17.
    ASTM (2012) Standard test method for sampling granular carriers and granular pesticides. vol ASTM E725-96. doi: 10.1520/E0725-96R12
  18. 18.
    Selig M, Weiss N, Ji Y (2008) Enzymatic Saccharification of Lignocellulosic Biomass.Technical Report: NREL/TP-510-42629; Golden, CO, 2008Google Scholar
  19. 19.
    Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J Agric Food Chem 58(16):9043–9053. doi: 10.1021/Jf1008023 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Singh S, Simmons BA, Vogel KP (2009) Visualization of Biomass Solubilization and Cellulose Regeneration During Ionic Liquid Pretreatment of Switchgrass. Biotechnol Bioeng 104(1):68–75. doi: 10.1002/Bit.22386 CrossRefPubMedGoogle Scholar
  21. 21.
    George KW, Chen A, Jain A, Batth TS, Baidoo EEK, Wang G, Adams PD, Petzold CJ, Keasling JD, Lee TS (2014) Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol Bioeng. doi: 10.1002/bit.25226 PubMedGoogle Scholar
  22. 22.
    Chou HH, Keasling JD (2012) Synthetic Pathway for Production of Five-Carbon Alcohols from Isopentenyl Diphosphate. Appl Environ Microbiol 78(22):7849–7855. doi: 10.1128/Aem. 01175-12 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    DOE (2012) 2011 Platform Review Report An Independent Evaluation of Platform Activities for FY 2010 and FY 2011. Washington DCGoogle Scholar
  24. 24.
    Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N, Pallapolu VR, Shi J, Thomas SR, Warner RE (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102(24):11052–11062. doi: 10.1016/j.biortech.2011.06.069 CrossRefPubMedGoogle Scholar
  25. 25.
    Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962. doi: 10.1016/j.biortech.2009.01.075 CrossRefPubMedGoogle Scholar
  26. 26.
    Li C, Sun L, Simmons BA, Singh S (2013) Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments. BioEnergy Res 6(1):14–23CrossRefGoogle Scholar
  27. 27.
    Shi J, Ebrik MA, Wyman CE (2011) Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass. Bioresour Technol 102(19):8930–8938. doi: 10.1016/j.biortech.2011.07.042 CrossRefPubMedGoogle Scholar
  28. 28.
    Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977CrossRefPubMedGoogle Scholar
  29. 29.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3. doi: 10.1186/1754-6834-3-10
  30. 30.
    O'Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRefGoogle Scholar
  31. 31.
    Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99(13):5694–5702. doi: 10.1016/j.biortech.2007.10.055 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim TH, Kim JS, Sunwoo C, Lee Y (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90(1):39–47CrossRefPubMedGoogle Scholar
  33. 33.
    Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906. doi: 10.1016/j.biortech.2009.10.066 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang T, Wyman CE, Jakob K, Yang B (2012) Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis. Biotechnol Biofuels 5:56PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Shi J, Ebrik MA, Yang B, Garlock RJ, Balan V, Dale BE, Pallapolu VR, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, Warner RE, Wyman CE (2011) Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 102(24):11080–11088. doi: 10.1016/j.biortech.2011.04.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Wyman CE, Dale BE, Balan V, Elander RT, Holtzapple MT, Ramirez RS, Ladisch MR, Mosier NS, Lee YY, Gupta R, Thomas SR, Hames BR, R. W, R. K (2013) Comparative Performance of Leading Pretreatment Technologies for Biological Conversion of Corn Stover, Poplar Wood, and Switchgrass to Sugars. In: Wyman CE (ed). doi: 10.1002/9780470975831
  37. 37.
    Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(7):1–14Google Scholar
  38. 38.
    Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101(13):4862–4874CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Jian Shi
    • 1
    • 2
  • Kevin W. George
    • 1
    • 3
  • Ning Sun
    • 1
    • 3
  • Wei He
    • 4
  • Chenlin Li
    • 4
  • Vitalie Stavila
    • 1
    • 2
  • Jay D. Keasling
    • 1
    • 3
    • 5
  • Blake A. Simmons
    • 1
    • 2
  • Taek Soon Lee
    • 1
    • 3
  • Seema Singh
    • 1
    • 2
    Email author
  1. 1.Joint BioEnergy InstituteEmeryvilleUSA
  2. 2.Biological and Materials Science CenterSandia National LaboratoriesLivermoreUSA
  3. 3.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.The Advanced Biofuels Process Demonstration Unit (ABPDU)Lawrence Berkeley National LaboratoryEmeryvilleUSA
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations