Advertisement

BioEnergy Research

, Volume 8, Issue 2, pp 868–880 | Cite as

PvNAC1 and PvNAC2 Are Associated with Leaf Senescence and Nitrogen Use Efficiency in Switchgrass

  • Jiading Yang
  • Eric Worley
  • Ivone Torres-Jerez
  • Randall Miller
  • Mingyi Wang
  • Chunxiang Fu
  • Zeng-Yu Wang
  • Yuhong Tang
  • Michael UdvardiEmail author
Article

Abstract

Two full-length cDNAs encoding NAM, ATAF, and CUC (NAC)-family transcription factors (TFs) were isolated from two different cultivars of Panicum virgatum L. (switchgrass) and named PvNAC1 and PvNAC2. Phylogenetic analysis of PvNAC1 and PvNAC2 grouped them with NAC proteins involved in senescence in annual plant species. Transcript profiling revealed that both PvNAC1 and PvNAC2 are induced during leaf senescence. Expression of a PvNAC1-green fluorescent protein (GFP) fusion in plant cells revealed a nuclear location of the protein, consistent with a role in transcriptional regulation. Expression of PvNAC1 in an Arabidopsis nap stay-green mutant suppressed its senescence defect. Expression of PvNAC1 in wild-type Arabidopsis triggered early leaf senescence and remobilization. Transcriptome analysis implicated leaf protein degradation and nitrogen recycling enzymes in NAC-dependent seed protein increase in Arabidopsis. Overexpression of pvNAC2 in switchgrass resulted in increased aboveground biomass associated with increased transcript levels of key nitrogen metabolism genes in leaves and nitrate and ammonium transporter genes in roots. The results indicate that NAC TFs play conserved roles in leaf senescence in the plant kingdom not only in annual monocots and dicots but also in perennial plants such as switchgrass. PvNAC1 and PvNAC2 hold promise for improving nutrient use efficiency in switchgrass through genetic manipulation.

Keywords

Switchgrass NAC Senescence Nitrogen remobilization/uptake 

Notes

Acknowledgments

We thank Prof. Arvid Boe (Plant Science Department, South Dakota State University) for generously providing seeds of switchgrass cultivar Summer and Dr. Albrecht von Arnim (Department of BCMB, University of Tennessee) for the gift pAVA121 vector. We also thank Jianfei Yun for the help with collecting switchgrass samples and caring for Arabidopsis plants. This work was supported by the Office of Biological and Environmental Research of the US Department of Energy via the BioEnergy Science Center (BESC) (grant number DE-PS02-06ER64304) and by the Samuel Roberts Noble Foundation.

Conflict of Interest

The authors have no conflict of interest to declare.

Supplementary material

12155_2014_9566_MOESM1_ESM.docx (457 kb)
ESM 1 (DOCX 457 kb)
12155_2014_9566_MOESM2_ESM.xlsx (158 kb)
ESM 2 (XLSX 157 kb)

References

  1. 1.
    Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459CrossRefGoogle Scholar
  2. 2.
    Ghimire S, Charlton N, Craven K (2009) The mycorrhizal fungus, Sebacina vermifera, enhances seed germination and biomass production in switchgrass (Panicum virgatum L). BioEnergy Res 2:51–58CrossRefGoogle Scholar
  3. 3.
    Hallam A, Anderson IC, Buxton DR (2001) Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass Bioenergy 21:407–424CrossRefGoogle Scholar
  4. 4.
    Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Agron J 102:1158–1168CrossRefGoogle Scholar
  5. 5.
    Yang J, Worley E, Wang M, Lahner B, Salt D, Saha M, Udvardi M (2009) Natural variation for nutrient use and remobilization efficiencies in switchgrass. BioEnergy Res 2:257–266CrossRefGoogle Scholar
  6. 6.
    Reynolds JH, Walker CL, Kirchner MJ (2000) Nitrogen removal in switchgrass biomass under two harvest systems. Biomass Bioenergy 19:281–286CrossRefGoogle Scholar
  7. 7.
    Lemus R, Parrish D, Abaye O (2008) Nitrogen-use dynamics in switchgrass grown for biomass. Bioenerg Res 1:153–162CrossRefGoogle Scholar
  8. 8.
    Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136CrossRefPubMedGoogle Scholar
  9. 9.
    Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49CrossRefPubMedGoogle Scholar
  10. 10.
    Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res 102:22–32CrossRefGoogle Scholar
  11. 11.
    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301CrossRefPubMedGoogle Scholar
  12. 12.
    Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002CrossRefPubMedGoogle Scholar
  13. 13.
    Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin J-F, Wu S-H, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585CrossRefPubMedGoogle Scholar
  14. 14.
    Lin J-F, Wu S-H (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628CrossRefPubMedGoogle Scholar
  15. 15.
    van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotech J 5:192–206CrossRefGoogle Scholar
  18. 18.
    Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177:333–349PubMedGoogle Scholar
  19. 19.
    Cantu D, Pearce S, Distelfeld A, Christiansen M, Uauy C, Akhunov E, Fahima T, Dubcovsky J (2011) Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics 12:492CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247CrossRefPubMedGoogle Scholar
  21. 21.
    Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563CrossRefPubMedGoogle Scholar
  22. 22.
    Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612CrossRefPubMedGoogle Scholar
  23. 23.
    Sadras V (2000) Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann Botany 85:187–195CrossRefGoogle Scholar
  24. 24.
    Zuo J, Niu Q-W, Chua N-H (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273CrossRefPubMedGoogle Scholar
  25. 25.
    Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MapMan: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939CrossRefPubMedGoogle Scholar
  26. 26.
    Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10(S1):23–36CrossRefPubMedGoogle Scholar
  27. 27.
    Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang Z-Y (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. Bioenerg Res 2:275–283CrossRefGoogle Scholar
  28. 28.
    Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Lea PJ, Ireland RJ (1999) The enzymes of glutamine, glutamate, asparagine, aspartate metabolism. In: Singh BK (ed) Plant amino acid: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–110Google Scholar
  30. 30.
    Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Botany 105:1141–1157CrossRefGoogle Scholar
  31. 31.
    Morgan JA, Parton WJ (1989) Characteristics of ammonia volatilization from spring wheat. Crop Sci 29:726–731CrossRefGoogle Scholar
  32. 32.
    Parton WJ, Morgan JA, Altenhofen JM, Harper LA (1988) Ammonia volatilization from spring wheat plants. Agron J 80:419–425CrossRefGoogle Scholar
  33. 33.
    Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549CrossRefGoogle Scholar
  34. 34.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077CrossRefGoogle Scholar
  36. 36.
    von Arnim AG, Deng X-W, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43CrossRefGoogle Scholar
  37. 37.
    Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213–1227CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  39. 39.
    Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156CrossRefPubMedGoogle Scholar
  40. 40.
    Horneck DA, Miller RO (1998) Determination of total nitrogen in plant tissue. In: Kalra YP (ed) Handbook of reference methods for plant analysis. vol CRC Press, Boca Raton, Boston, London, New York, Washington DC pp 75–83Google Scholar
  41. 41.
    Modolo L, Blount J, Achnine L, Naoumkina M, Wang X, Dixon R (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 64:499–518CrossRefPubMedGoogle Scholar
  42. 42.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jiading Yang
    • 1
    • 3
  • Eric Worley
    • 1
    • 3
  • Ivone Torres-Jerez
    • 1
  • Randall Miller
    • 1
    • 3
  • Mingyi Wang
    • 1
  • Chunxiang Fu
    • 2
  • Zeng-Yu Wang
    • 2
    • 3
  • Yuhong Tang
    • 1
    • 3
  • Michael Udvardi
    • 1
    • 3
    Email author
  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  2. 2.Forage Improvement DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  3. 3.Bioenergy Science Center (BESC)Oak RidgeUSA

Personalised recommendations