BioEnergy Research

, Volume 8, Issue 1, pp 259–269 | Cite as

Ploidy Level Affects Important Biomass Traits of Novel Shrub Willow (Salix) Hybrids

  • Michelle J. Serapiglia
  • Fred E. Gouker
  • J. Foster Hart
  • Faride Unda
  • Shawn D. Mansfield
  • Arthur J. Stipanovic
  • Lawrence B. Smart
Article

Abstract

Polyploidy is a common observation in the genus Salix, including some of the shrub willow species currently being bred as a potential bioenergy feedstock. Breeding of shrub willow has produced new species hybrids, among which a disproportionate number of high-yielding genotypes are triploid, produced from crosses between diploid and tetraploid parents. These novel hybrids display significant variation in biomass compositional quality, including differences according to ploidy. The triploid and tetraploid genotypes possess lower lignin content than diploid genotypes. Biomass composition was also significantly different across the 3-year growth cycle typical of bioenergy plantings. There were differences in syringyl/guaiacyl (S:G) lignin ratios among the 75 genotypes examined, in addition to significant correlations with willow growth traits, yield, and composition. These differences suggest that a long-term strategy of breeding for triploid progeny will generate cultivars with improved growth traits and wood composition for conversion to biofuels.

Keywords

Biofuel feedstock Cellulose Lignin Polyploid Wood composition 

Supplementary material

12155_2014_9521_MOESM1_ESM.pdf (26 kb)
Online Resource 1(PDF 26 kb)
12155_2014_9521_MOESM2_ESM.xlsx (42 kb)
Online Resource 2(XLSX 41 kb)
12155_2014_9521_MOESM3_ESM.pdf (9 kb)
Online Resource 3(PDF 8 kb)

References

  1. 1.
    Argus GW (1997) Infrageneric classification of Salix (Salicaceae) in the New World. The American Society of Plant Taxonomists. Mich, Ann ArborGoogle Scholar
  2. 2.
    Larsson S (1998) Genetic improvement of willow for short-rotation coppice. Biomass Bioenerg 15:23–26CrossRefGoogle Scholar
  3. 3.
    Smart LB, Cameron KD (2008) Genetic improvement of willow (Salix spp.) as a dedicated energy crop. In: Vermerris WE (ed) Genetic improvement of Bioenergy crops. Springer Science, New York, pp 347–376Google Scholar
  4. 4.
    Karp A, Hanley S, Trybush S, Macalpine W, Pei MH, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53:151–165CrossRefPubMedGoogle Scholar
  5. 5.
    Volk TA, Abrahamson LP, Cameron KD, Castellano P, Corbin T, Fabio E, Johnson G, Kuzovkina-Eischen J, Labrecque M, Miller R, Sidders D, Smart LB, Staver K, Stanosz GR, Van Rees K (2011) Yields of willow biomass crops across a range of sites in North America. Aspects Appl Biol 112:67–74Google Scholar
  6. 6.
    Serapiglia MJ, Cameron KD, Stipanovic AJ, Abrahamson LP, Volk TA, Smart LB (2012) Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. BioEnerg Res 6:533–546CrossRefGoogle Scholar
  7. 7.
    Lin J, Gibbs JP, Smart LB (2009) Population genetic structure of native versus naturalized sympatric shrub willows (Salix; Salicaceae). Am J Bot 96:771–785CrossRefPubMedGoogle Scholar
  8. 8.
    Weih M, Rönnberg-Wästljung A-C, Glynn C (2006) Genetic basis of phenotypic correlations among growth traits in hybrid willow (Salix dasyclados x S. viminalis) grown under two water regimes. New Phytol 170:467–477CrossRefPubMedGoogle Scholar
  9. 9.
    Cameron KD, Phillips IS, Kopp RF, Volk TA, Maynard CA, Abrahamson LP, Smart LB (2008) Quantitative genetics of traits indicative of biomass production and heterosis in 34 full-sib F1 Salix eriocephala families. BioEnerg Res 1:80–90CrossRefGoogle Scholar
  10. 10.
    Orians CM, Huang C, Wild A, Zee P, Dao MTT, Fritz RS (1997) Willow hybridization differentially affects preference and performance of herbivorous beetles. Entomol Exp Appl 83:285–294CrossRefGoogle Scholar
  11. 11.
    Pei MH, Lindegaard K, Ruiz C, Bayon C (2008) Rust resistance of some varieties and recently bred genotypes of biomass willows. Biomass Bioenerg 32:453–459CrossRefGoogle Scholar
  12. 12.
    Pei MH, Shield I, Macalpine W, Lindegaard KN, Bayon C, Karp A (2010) Mendelian inheritance of rust resistance to Melampsora larici-epitea in crosses between Salix sachalinensis and S. viminalis. Plant Pathol 59:862–872CrossRefGoogle Scholar
  13. 13.
    Zsuffa L, Mosseler A, Raj Y (1984) Prospects for interspecific hybridization in willow for biomass production. In: Perttu K (ed) Ecology and management of forest biomass production systems, vol 15. Swed. Univ. Agric. Sci, Uppsala, pp 261–281Google Scholar
  14. 14.
    Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybid maize. Nature Genet 44:217–220CrossRefPubMedGoogle Scholar
  15. 15.
    Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482CrossRefPubMedGoogle Scholar
  16. 16.
    Goff SA, Zhang Q (2013) Hetosis in elite hybrid rice: speculation on the genetic and biochemical mechanism. Curr Opin Plant Biol 16:221–227CrossRefPubMedGoogle Scholar
  17. 17.
    Serapiglia MJ, Gouker FG, Smart LB (2014) Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol 14:74. doi:10.1186/1471-2229-1114-1174 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Nilsson-Ehle H (1938) Uber eine in der naturgefundene gigasform von Populus tremula. Hereditas 21:379–383CrossRefGoogle Scholar
  19. 19.
    Zhang P, Wu F, Kang X (2012) Genotypic variation in wood properties and growth traits of triploid hybrid clones of Populus tomentosa at three clonal trials. Tree Genet Genomes 8:1041–1050CrossRefGoogle Scholar
  20. 20.
    Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion JM, Nourrisier-Mountou S, Polidori J, Bouvet JM (2013) Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genet Genomes 9:927–942CrossRefGoogle Scholar
  21. 21.
    Porth I, Klápště J, Skyba O, Friedmann MC, Hannemann J, Ehlting J, El-Kassaby YA, Mansfield SD, Douglas CJ (2013) Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions. New Phytol 200:727–742CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang P, Wu F, Kang X (2013) Genetic control of fiber properties and growth in triploid hybrid clones of Populus tomentosa. Scand J Forest Res 28:621–630CrossRefGoogle Scholar
  23. 23.
    Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart LB (2009) Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content as tools for the selection of shrub willow bioenergy crop varieties. BioEnerg Res 2:1–9CrossRefGoogle Scholar
  24. 24.
    TAPPI Standard T 258 om-06 (2006) Basic density and moisture content of pulpwood. In TAPPI Test Methods 2006. TAPPI Press, Technology Park, AtlantaGoogle Scholar
  25. 25.
    Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield S (2003) Significant increases in pulping efficiency in C4H-F5H transformed poplars: improved chemical savings and reduced environmental toxins. J Agr Food Chem 51:6178–6183CrossRefGoogle Scholar
  26. 26.
    Robinson AR, Mansfield SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58:706–714CrossRefPubMedGoogle Scholar
  27. 27.
    SAS Institute Inc. SAS 9.1.3 Help and documentation. In. Cary, NC: SAS Institute Inc., 2000–2004Google Scholar
  28. 28.
    Armstrong J (1982) Polyploidy and wood anatomy of mature white ash, Fraxinus americana. Wood Fiber Sci 14:331–339Google Scholar
  29. 29.
    Van Buijtenen JP, Joranson PN, Einspahr DW (1958) Diploid versus triploid aspen as pulpwood sources, with reference to growth, chemical, physical, and pulping differences. TAPPI 41:170–175Google Scholar
  30. 30.
    Einspahr DW, van Buijtenen JP, Peckman JR (1963) Natural variation and heritability in triploid aspen. Silvae Genet 12Google Scholar
  31. 31.
    Benson MK, Einspahr DW (1967) Early growth of diploid, triploid and triploid hybrid aspen. Forest Sci 13:150–155Google Scholar
  32. 32.
    Hu B, Wang B, Wang C, Song W, Chen C (2012) Microarray analysis of gene expression in triploid black poplar. Silvae Genet 61:148–157Google Scholar
  33. 33.
    Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109:14746–14753CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Yao H, Gray AD, Auger DL, Birchler JA (2013) Genomic dosage effects on heterosis in triploid maize. Proc Natl Acad Sci U S A 110:2665–2669CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Novaes E, Kirst M, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Kirst M, Myburg AA, De Leon JPG, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Shafizadeh F, Chin PPS (1977) Thermal deterioration of wood. In IS Goldstein, ed, Wood Technology: Chemical Aspects. American Chemical Society Symposium Series 43, pp 57–81Google Scholar
  38. 38.
    Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42:183–188CrossRefGoogle Scholar
  39. 39.
    Serapiglia MJ, Humiston MC, Xu H, Hogsett DA, de Orduna RM, Stipanovic AJ, Smart LB (2013) Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production. Front Plant Sci 4:57. doi:10.3389/fpls.2013.00057 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Van Acker R, Leplé J-C, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MCE, Santoro N, Foster CE, Ralph J, Soetaert W, Pilate G, Boerjan W (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 111:845–850CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Brereton NJB, Ray MJ, Shield I, Martin P, Karp A, Murphy RJ (2012) Reaction wood—a key cause of variation in cell wall recalcitrance in willow. Biotech Biofuel 5:83. doi:10.1186/1754-6834-1185-1183 CrossRefGoogle Scholar
  42. 42.
    Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108:6300–6305CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mansfield SD, Kang K-Y, Chapple C (2012) Designed for deconstruction—poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 194:91–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michelle J. Serapiglia
    • 1
    • 4
  • Fred E. Gouker
    • 1
  • J. Foster Hart
    • 2
  • Faride Unda
    • 2
  • Shawn D. Mansfield
    • 2
  • Arthur J. Stipanovic
    • 3
  • Lawrence B. Smart
    • 1
  1. 1.Department of Horticulture, New York State Agricultural Experiment StationCornell UniversityGenevaUSA
  2. 2.Department of Wood Science, Forest Sciences CentreUniversity of British ColumbiaVancouverCanada
  3. 3.Department of ChemistryState University of New York College of Environmental Science and ForestrySyracuseUSA
  4. 4.Sustainable Biofuels and Coproducts Research Unit, Eastern Regional Research CenterUSDA—ARSWyndmoorUSA

Personalised recommendations