Advertisement

BioEnergy Research

, Volume 8, Issue 1, pp 53–67 | Cite as

Brachypodium Cell Wall Mutant with Enhanced Saccharification Potential Despite Increased Lignin Content

  • Hélène Timpano
  • Richard Sibout
  • Marie-Françoise Devaux
  • Camille Alvarado
  • Rachelle Looten
  • Xavier Falourd
  • Bruno Pontoire
  • Marjolaine Martin
  • Frédéric Legée
  • Laurent Cézard
  • Catherine Lapierre
  • Eric Badel
  • Sylvie Citerne
  • Samantha Vernhettes
  • Herman Höfte
  • Fabienne Guillon
  • Martine GonneauEmail author
Article

Abstract

Plant lignocellulosic biomass, mostly composed of cell walls, is one of the largest, mostly untapped, reserves of renewable carbon feedstock on the planet. Energy-rich polysaccharide polymers of plant cell walls can be broken down to produce fermentable sugars used to produce bioethanol. However, the complex structure of plant cell walls, and in particular, the presence of lignin, makes them recalcitrant to enzymatic degradation. Reducing this recalcitrance represents a major technological challenge. Brachypodium distachyon is an excellent model to identify parameters underlying biomass quality of energy grasses. In this work, we identified a mutant line spa1 with a so far undescribed phenotype combining brittleness with increased elasticity of the internodes. Mutant cell walls contain less crystalline cellulose and changes in hemicellulose and lignin quality and quantity. Using a dedicated reactor to follow in real-time, the evolution of straw particle size and sugar release during enzymatic digestion, we show that, despite the increased lignin content, the spa1 mutant has a dramatic reduced recalcitrance to saccharification compared to the WT. These observations demonstrate that other parameters besides lignin content are relevant for the improvement of biomass recalcitrance in energy grasses.

Keywords

Brachypodium Cell wall Cellulose Lignins Mutant Saccharification Biofuels 

Notes

Acknowledgments

This work was founded by the EU Framework program 7, project 211982 (Renewall) and the KBBE (2008) trilateral project “CellWall.” We thank Jacqueline Vigouroux for her help for sugar analysis, Sylvie Durand and Paul Robert for their assistance for FT-IR spectroscopy analysis and Olivier Darracq and Sébastien Antelme for taking care of the Brachypodium plants in the greenhouse. We also thank the Plateform “Chimie de Végétal (PFCV)” of the IJPB. Nuclear magnetic resonance and electron transmission microscopy were performed at the IBISA/BioGenOuest Biopolymers Structural Biology platform (BIBS, UR 1268 BIA, INRA Angers-Nantes).

Supplementary material

12155_2014_9501_MOESM1_ESM.docx (74 kb)
Supplementary Table 1 (DOCX 74 kb)
12155_2014_9501_MOESM2_ESM.docx (38 kb)
Supplementary Table 2 (DOCX 38 kb)

References

  1. 1.
    Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol 8:191–208CrossRefGoogle Scholar
  2. 2.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefPubMedGoogle Scholar
  3. 3.
    Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172CrossRefPubMedGoogle Scholar
  4. 4.
    Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O et al (2013) A TILLING platform for functional genomics. PLoS ONE 8:e65503CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Serra J (1982) Image analysis and mathematical morphology. Academic, LondonGoogle Scholar
  6. 6.
    Devaux M-F, Bouchet B, Legland D, Guillon F, Lahaye M (2008) Macro-vision and grey level granulometry for quantification of tomato pericarp structure. Postharvest Biol Technol 47:199–209CrossRefGoogle Scholar
  7. 7.
    Updegraff DM (1969) Semi-micro determination of cellulose in biological materials. Anal Biochem 32:420–424CrossRefPubMedGoogle Scholar
  8. 8.
    Dence CW (1992) The determination of lignin. Springer, HeidelbergGoogle Scholar
  9. 9.
    Lapierre C (2010) Determining lignin structure by chemical degradations. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  10. 10.
    Bouvier-d’Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cezard L et al (2013) Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J 73:496–508CrossRefPubMedGoogle Scholar
  11. 11.
    Ishii T (1997) Structure and functions of feroylated polysaccharides. Plant Sci 127:111–127CrossRefGoogle Scholar
  12. 12.
    Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83CrossRefGoogle Scholar
  13. 13.
    Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751CrossRefGoogle Scholar
  14. 14.
    Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F et al (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77:713–726CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Brown JA, Fry SC (1993) The preparation and susceptibility to hydrolysis of novel O-galacturonoyl derivatives of carbohydrates. Carbohydr Res 240:95–106CrossRefPubMedGoogle Scholar
  16. 16.
    Saulnier L, Vigouroux J, Thibault JF (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253CrossRefPubMedGoogle Scholar
  17. 17.
    Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397CrossRefPubMedGoogle Scholar
  18. 18.
    Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME et al (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641CrossRefPubMedGoogle Scholar
  19. 19.
    Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304CrossRefPubMedGoogle Scholar
  20. 20.
    Terashima N, Fukushima K, He L-F, Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG, Buxton RD, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, pp 247–270Google Scholar
  21. 21.
    Timell TE (1986) Compression wood in gymnosperms. Springer, BerlinCrossRefGoogle Scholar
  22. 22.
    Lange BM, Lapierre C, Sandermann H Jr (1995) Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol 108:1277–1287PubMedCentralPubMedGoogle Scholar
  23. 23.
    Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C et al (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057CrossRefPubMedGoogle Scholar
  25. 25.
    Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182CrossRefPubMedGoogle Scholar
  26. 26.
    Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436CrossRefGoogle Scholar
  27. 27.
    Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212CrossRefPubMedGoogle Scholar
  28. 28.
    Murozuka E, Nord-Larsen PH, Møller IS, Jahn TP, Schjoerring JK (2011) Identification of Brachypodium mutants defective in silicon uptake. First European Brachypodium Workshop, VersaillesGoogle Scholar
  29. 29.
    Yamamoto T, Nakamura A, Iwai H, Ishii T, Ma JF et al (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 125:771–779CrossRefPubMedGoogle Scholar
  30. 30.
    Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581CrossRefPubMedGoogle Scholar
  31. 31.
    Yang B, Wyman CE (2007) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40CrossRefGoogle Scholar
  32. 32.
    Zhang B, Zhou Y (2011) Rice brittleness mutants: a way to open the ‘black box’ of monocot cell wall biosynthesis. J Integr Plant Biol 53:136–142CrossRefPubMedGoogle Scholar
  33. 33.
    Yang J, Ordiz MI, Semenyuk EG, Kelly B, Beachy RN (2012) A safe and effective plant gene switch system for tissue-specific induction of gene expression in Arabidopsis thaliana and Brassica juncea. Transgenic Res 21:879–883CrossRefPubMedGoogle Scholar
  34. 34.
    Hoebler C, Barry J-L, David A, Delort-Laval J (1989) Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. J Agric Food Chem 37:360–365CrossRefGoogle Scholar
  35. 35.
    Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299CrossRefGoogle Scholar
  36. 36.
    Tollier M-T, Robin J-P (1979) Adaptation de la méthode à l’orcinol sulfurique au dosage automatique des glucides neutres totaux: conditions d’application aux extraits d’origine végétale. Ann Technol Agric 28:1–15Google Scholar
  37. 37.
    Thibault J-F (1979) Automatisation du dosage des substances pectiques par la méthode au meta-hydroxydiphenyl. Lebensm-Wiss Technol 12:247–251Google Scholar
  38. 38.
    Scott TA, Melvin EH (1953) Determination of dextran with anthrone. Anal Chem 25:1656–1661CrossRefGoogle Scholar
  39. 39.
    VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472CrossRefGoogle Scholar
  40. 40.
    Newman RH (1997) Crystalline forms of cellulose in the silver tree fern Cyathea dealbata. Cellulose 4:269–279CrossRefGoogle Scholar
  41. 41.
    Kolodziejski W, Frye JS, Maciel GE (1982) Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood. Anal Chem 54:1419–1424CrossRefGoogle Scholar
  42. 42.
    Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in cellulose. Carbohydr Res 302:19–25CrossRefGoogle Scholar
  43. 43.
    Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline cellulose forms in cellulose-I by CP/MAS C-13 NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  44. 44.
    Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–355CrossRefGoogle Scholar
  45. 45.
    Wakelin JH, Virgin HS, Crystal E (1959) Development and comparison of two X-ray methods for determining the crystallinity of cotton cellulose. J Appl Phys 30:1654–1662CrossRefGoogle Scholar
  46. 46.
    Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89:761–768CrossRefPubMedGoogle Scholar
  47. 47.
    Thiéry JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie éléctronique. J Microsc 6:987–1018Google Scholar
  48. 48.
    Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB et al (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329CrossRefPubMedGoogle Scholar
  49. 49.
    Devaux MF, Sire A, Papineau P (2009) Macrovision et analyse granulométrique en niveaux de gris pour l’analyse histologique de tissus végétaux. in Le cahier des techniques de l’INRA. INRAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hélène Timpano
    • 1
    • 2
  • Richard Sibout
    • 1
    • 2
  • Marie-Françoise Devaux
    • 3
  • Camille Alvarado
    • 3
  • Rachelle Looten
    • 3
  • Xavier Falourd
    • 3
  • Bruno Pontoire
    • 3
  • Marjolaine Martin
    • 1
    • 2
  • Frédéric Legée
    • 1
    • 2
  • Laurent Cézard
    • 1
    • 2
  • Catherine Lapierre
    • 1
    • 2
  • Eric Badel
    • 4
    • 5
  • Sylvie Citerne
    • 1
    • 2
  • Samantha Vernhettes
    • 1
    • 2
  • Herman Höfte
    • 1
    • 2
  • Fabienne Guillon
    • 3
  • Martine Gonneau
    • 1
    • 2
    Email author
  1. 1.INRA, UMR1318, Institut Jean-Pierre BourginSaclay Plant SciencesVersaillesFrance
  2. 2.AgroParisTech, Institut Jean-Pierre BourginVersaillesFrance
  3. 3.INRA UR1268 Biopolymers, Interactions AssembliesNantesFrance
  4. 4.INRA, UMR547 PIAFClermont-FerrandFrance
  5. 5.Clermont Université, Université Blaise-Pascal, UMR547 PIAFClermont-FerrandFrance

Personalised recommendations