BioEnergy Research

, Volume 7, Issue 4, pp 1454–1465

Comparison Study on the Biomass Recalcitrance of Different Tissue Fractions of Sugarcane Culm

  • Michel Brienzo
  • Solange Ferreira
  • Marcos P. Vicentim
  • Wanderley de Souza
  • Celso Sant’Anna
Article

Abstract

Conversion of sugarcane bagasse to bioethanol is hindered due to intrinsic biomass recalcitrance that is related to its chemical composition and physicochemical properties. Furthermore, biomass heterogeneity interferes with process effectiveness. To compare sugarcane culm recalcitrance epidermis, internode and node fractions were individually investigated by acid pretreatment, enzymatic hydrolysis and thermal analysis/degradation. The epidermis fraction was found to be the largest mass fraction of the sucrose-free sugarcane culm followed by the epidermis-free internode and node fractions, comprising 65, 19 and 15.5 %, respectively. In comparison to the internode and node acid pretreatment solubilized a lower level of xylose from the epidermis resulting in higher mass recovery of water-insoluble solids (WIS) demonstrating its higher resistance to acid pretreatment. Enzymatic digestion showed that the epidermis is least susceptible to hydrolysis followed by the node and internode: 18.6, 56.5 and 75.9 %, respectively. In agreement with the enzymatic hydrolysis yield the internal/external surface area was lower for the epidermis than for the node and internode. Scanning electron microscopy (SEM) showed the epidermis exhibited less structural damage after enzymatic hydrolysis. Moreover, the epidermis required a higher start temperature for degradation (330 °C) and exhibited a higher heating value (4,236 cal/g). The internode and node required a degradation start temperature of 288 and 265 °C and had heating values of 4,098.9 and 3,998.76 cal/g, respectively. Taken together the results of this study demonstrate that the epidermis is more resistant to pretreatment, to thermal and enzyme degradation than are the internode and node. The separation of the epidermis from the culm could provide a new perspective on proper use/conversion of the most recalcitrant fraction of the sugarcane. In fact, separation of fractions decreases the biomass heterogeneity with a positive impact on the effectiveness of the conversion process for selecting material more susceptive to pretreatment or optimizing the process for each fraction.

Keywords

Bioethanol Recalcitrance Digestibility Thermal degradation Culm Epidermis 

Supplementary material

12155_2014_9487_Fig7_ESM.gif (947 kb)
Figure S1

Scanning electron microscopy images of untreated (extractive-free) epidermis, node and internode. (GIF 946 kb)

12155_2014_9487_MOESM1_ESM.tif (7 mb)
High resolution image (TIFF 7120 kb)
12155_2014_9487_Fig8_ESM.gif (894 kb)
Figure S2

Scanning electron microscopy images of acid-pretreated (5 % m/m acid at 121 °C/30 min) epidermis, node and internode. (GIF 893 kb)

12155_2014_9487_MOESM2_ESM.tif (7 mb)
High resolution image (TIFF 7122 kb)
12155_2014_9487_Fig9_ESM.gif (914 kb)
Figure S3

Scanning electron microscopy images of acid-pretreated (10 % m/m acid at 121 °C/30 min) epidermis, node and internode. (GIF 914 kb)

12155_2014_9487_MOESM3_ESM.tif (7 mb)
High resolution image (TIFF 7119 kb)
12155_2014_9487_Fig10_ESM.gif (979 kb)
Figure S4

Scanning electron microscopy images of acid-pretreated (20 % m/m acid at 121 °C/30 min) epidermis, node and internode. (GIF 979 kb)

12155_2014_9487_MOESM4_ESM.tif (7 mb)
High resolution image (TIFF 7119 kb)
12155_2014_9487_Fig11_ESM.gif (976 kb)
Figure S5

Scanning electron microscopy images of solid residue from enzymatic hydrolysis of acid-pretreated (20 % m/m acid at 121 °C/30 min) epidermis, node and internode. (GIF 976 kb)

12155_2014_9487_MOESM5_ESM.tif (12.4 mb)
High resolution image (TIFF 12721 kb)

References

  1. 1.
    Lynd LR, Gerngross TU, Wyman CE (1999) Biocommodity engineering. Biotechnol Prog 15:777–793PubMedCrossRefGoogle Scholar
  2. 2.
    Fengel, D., Wegener, G. 1984. Wood: Chemistry, Ultrastructure reactions. New York: W. De Gruyter, 1984, p. 613.Google Scholar
  3. 3.
    De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production. Bioenerg Res 6:564–579CrossRefGoogle Scholar
  4. 4.
    Corrales RCNR, Mendes FMT, Perrone CC, Sant’Anna C, Souza W, Abud Y, Bom EPS, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 5:36PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962PubMedCrossRefGoogle Scholar
  6. 6.
    Miller, J.D., Gilbert, R.A., Odero, D.C., 2012. Sugarcane botany: A brief view. Document is SS-AGR-234, one of a series of the Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Access on August of 2013: http://edis.ifas.ufl.edu/sc034.
  7. 7.
    Xu, F. 2010. Structure, ultrastructure, and chemical composition. In: Sun R-C, Cereal straw as a resource of sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. Chapter 2. Amsterdam; Boston: Elsevier, p. 9–47.Google Scholar
  8. 8.
    Burk D, Kaufman P, Mcneil M, Albersheim P (1974) The structure of plant cell walls–A survey of the walls of suspension-cultured monocots. Plant Physiol 54:109–115CrossRefGoogle Scholar
  9. 9.
    Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the cell wall during growth. Plant J 3:1–30PubMedCrossRefGoogle Scholar
  10. 10.
    Abud Y, Costa TL, De Souza W, Sant’Anna C (2013) Revealing the microfibrillar arrangement of the cell wall surface and the macromolecular effects of thermochemical pretreatment in sugarcane by atomic force microscopy. Ind Crop Prod 51:62–69CrossRefGoogle Scholar
  11. 11.
    Sant’Anna C, Costa TL, Abud Y, Biancatto L, Miguens FC, De Souza W (2013) Sugarcane cell wall structure and lignina distribution investigated by confocal and electron microscopy. Microsc Res Tech 76:829–834PubMedCrossRefGoogle Scholar
  12. 12.
    Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: A Review. Enzyme Research Article ID 787532:17Google Scholar
  13. 13.
    Canilha L, Santos VTO, Rocha GJM, Silva JBA, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475PubMedCrossRefGoogle Scholar
  14. 14.
    Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134CrossRefGoogle Scholar
  15. 15.
    Wyman C, Dale B, Elander R, Holtzapple M, Ladisch M, Lee Y (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966PubMedCrossRefGoogle Scholar
  16. 16.
    Siqueira G, Milagres AMF, Carvalho W, Koch G, Ferraz A (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuel 4:7CrossRefGoogle Scholar
  17. 17.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2010. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP).Google Scholar
  18. 18.
    Simons FL (1950) A stain for use in the microscopy of beaten fibers. Tappi J 33:312–314Google Scholar
  19. 19.
    Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: A modified Simons’ staining technique. Biotechnol Prog 5:1178–1185CrossRefGoogle Scholar
  20. 20.
    Segal L, Creely JJ, Martin AEJ, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794CrossRefGoogle Scholar
  21. 21.
    Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Pribowo A, Arantes V, Saddler JN (2012) The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Tech 50:195–203CrossRefGoogle Scholar
  23. 23.
    Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591PubMedCrossRefGoogle Scholar
  24. 24.
    Bozell, J.J., Landucci, R., 1993. Alternative feedstocks program technical and economic assessment: Thermal/chemical and bioprocessing components; National Renewable Energy Laboratory: Golden, COGoogle Scholar
  25. 25.
    Pinto PCR, Silva EAB, Rodrigues AE (2012) Lignin as source of fine chemicals: vanillin and syringaldehyde. Biomass Conversion 381–420Google Scholar
  26. 26.
    Branco RF, Santos JC, Silva SS (2011) A novel use for sugarcane bagasse hemicellulosic fraction: Xylitol enzymatic production. Biomass Bioenerg 35:3241–3246CrossRefGoogle Scholar
  27. 27.
    Brienzo M, Carvalho W, Milagres AMF (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacusx. Appl Biochem Biotechnol 162:1195–1205PubMedCrossRefGoogle Scholar
  28. 28.
    O’Brien TP, Zee Y (1971) Vascular transfer cells in the vegetative nodes of wheat. Aust J Biol Sci 24:207–17Google Scholar
  29. 29.
    Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG (2012) Cell wall evolution and diversity. Front Plant Sci 6:152Google Scholar
  30. 30.
    Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568PubMedCrossRefGoogle Scholar
  31. 31.
    Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204CrossRefGoogle Scholar
  32. 32.
    Masarin F, Gurpilhares DB, Baffa DCF, Barbosa MHP, Carvalho W, Ferraz A, Milagres AMF (2011) Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin contente. Biotechnol Biofuels 4:55PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848PubMedCrossRefGoogle Scholar
  34. 34.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122PubMedCrossRefGoogle Scholar
  36. 36.
    Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jørgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Tech 40:888–895CrossRefGoogle Scholar
  37. 37.
    Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591PubMedCrossRefGoogle Scholar
  38. 38.
    Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Do enzymatic digestibility and Simons’ stain reflect the differences in the available surface area of lignocellulosic substrates? Biotechnol Prog 17:1049–1054PubMedCrossRefGoogle Scholar
  39. 39.
    Pippo WA, Luengo CA (2013) Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int J Energ Environ Eng 4:10CrossRefGoogle Scholar
  40. 40.
    Pereira PHF, Voorwald HCJ, Cioffi MOH, Mulinari DR, Da Luz SM, Da Silva MLCP (2011) Sugarcane bagasse pulping and bleaching: Thermal and chemical characterization. Bioresources 6:2471–2482Google Scholar
  41. 41.
    Saddawi A, Jones JM, Williams A, Ojtowicz MAW (2010) Kinetics of the thermal decomposition of biomass. Energy Fuels 24:1274–1282CrossRefGoogle Scholar
  42. 42.
    Mendu V, Harman-Ware AE, Crocker M, Jae J, Stork J, Morton S, Placido A, Huber G, DeBolt S (2011) Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol Biofuels 4:43PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil 84:331–339CrossRefGoogle Scholar
  44. 44.
    Zhuang JM, Steiner PR (1993) Thermal reactions of diisocyanate (MDI) with phenols and benzylalcohols: DSC study and synthesis of MDI adducts. Holzforschung 47:425–434CrossRefGoogle Scholar
  45. 45.
    Ramos E, Paula LE, Trugilho PF, Napoli A, Bianchi ML (2011) Characterization of residues from plant biomass for use in energy generation. Cerne 17:237–246CrossRefGoogle Scholar
  46. 46.
    White RH (1987) Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci 19:446–452Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michel Brienzo
    • 1
  • Solange Ferreira
    • 1
  • Marcos P. Vicentim
    • 2
  • Wanderley de Souza
    • 1
    • 3
  • Celso Sant’Anna
    • 1
  1. 1.Laboratory of Structural BiologyMetrology Applied to Science life–National Institute of Metrology, Quality and Technology (Inmetro)Duque de CaxiasBrazil
  2. 2.Laboratory of Organic AnalysisDivision of Chemical Metrology–National Institute of Metrology, Quality and Technology (Inmetro)Duque de CaxiasBrazil
  3. 3.Laboratory of Cell Structure, Institute of Biophysics Carlos Chagas Filho, National Science and Technology Institute in Structural Biology and BioimagingRio de Janeiro Federal UniversityRio de JaneiroBrazil

Personalised recommendations