BioEnergy Research

, Volume 7, Issue 1, pp 232–242

Production of Autopolyploid Lowland Switchgrass Lines Through In Vitro Chromosome Doubling

  • Zhiyong Yang
  • Zhengxing Shen
  • Hannah Tetreault
  • Loretta Johnson
  • Bernd Friebe
  • Taylor Frazier
  • Lin-kai Huang
  • Caitlin Burklew
  • Xin-Quan Zhang
  • Bingyu Zhao


Switchgrass is considered one of the most promising energy crops. However, breeding of elite switchgrass cultivars is required to meet the challenges of large scale and sustainable biomass production. As a native perennial adapted to North America, switchgrass has lowland and upland ecotypes, where most lowland ecotypes are tetraploid (2n = 4x = 36), and most upland ecotypes are predominantly octoploid (2n = 8x = 72). Hybridization between lowland and upland switchgrass plants could identify new cultivars with heterosis. However, crossing between tetraploid and octoploid switchgrass is rare in nature. Therefore, in order to break down the cross incompatibility barrier between tetraploid lowland and octoploid upland switchgrass lines, we developed autoployploid switchgrass lines from an anueploid lowland cv. Alamo. In this study, colchicine was used in liquid and solid mediums to chemically induce chromosome doubling in embryogenic calli derived from cv. Alamo. Thirteen autopolyploid switchgrass lines were regenerated from seedlings and identified using flow cytometry. The autoplyploid switchgrass plants exhibited increased stomata aperture and stem size in comparison with the cv. Alamo. The most autooplyploid plants were regenerated from switchgrass calli that were treated with 0.04 % colchicine in liquid medium for 13 days. One autopolyploid switchgrass line, VT8-1, was successfully crossed to the octoploid upland cv. Blackwell. The autoployploid and the derived inter-ecotype hybrids were confirmed by in situ hybridization and molecular marker analysis. Therefore, the results of this study show that an autopolyploid, generated by chemically induced chromosome doubling of lowland cv. Alamo, is cross compatible with upland octoploid switchgrass cultivars. The outcome of this study may have significant applications in switchgrass hybrid breeding.


Bioenergy Switchgrass Autopolyploids Chromosome doubling Cytogenetics Biofeedstocks 


  1. 1.
    Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17(6):553–558PubMedCrossRefGoogle Scholar
  2. 2.
    Hartman JC, Nippert JB, Orozco RA, Springer CJ (2011) Potential ecological impacts of switchgrass (Panicum virgatum L.) biofuel cultivation in the central great plains, USA. Biomass Bioenerg 35(8):3415–3421CrossRefGoogle Scholar
  3. 3.
    Cornelius D, Johnston C (1941) Differences in plant type and reaction to rust among several collections of Panicum virgatum L. J Am Soc Agron 33:115–124CrossRefGoogle Scholar
  4. 4.
    Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177(6):724–732CrossRefGoogle Scholar
  5. 5.
    Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24(5):423–459CrossRefGoogle Scholar
  6. 6.
    Parrish DJ, Fike JH (2009) Selecting, establishing, and managing switchgrass (Panicum virgatum) for biofuels. Methods Mol Biol 581:27–40PubMedCrossRefGoogle Scholar
  7. 7.
    Church GL (1940) Cytotaxonomic studies in the Gramineae Spartina, Andropogon and Panicum. Am J Bot 27(4):263–271CrossRefGoogle Scholar
  8. 8.
    Hopkins AA, Taliaferro CM, Murphy CD, Christian DA (1996) Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci 36:1192–1195CrossRefGoogle Scholar
  9. 9.
    Brunken JN, Estes JR (1975) Cytological and morphological variation in Panicum virgatum L. Southwest Nat 19:379–385CrossRefGoogle Scholar
  10. 10.
    Martinez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42(6):1800–1805CrossRefGoogle Scholar
  11. 11.
    Martinez-Reyna JM, Vogel KP, Caha C, Lee DJ (2001) Meiotic stability, chloroplast DNA polymorphisms, and morphological traits of upland × lowland switchgrass reciprocal hybrids. Crop Sci 41(5):1579–1583CrossRefGoogle Scholar
  12. 12.
    Huang S, Su X, Haselkorn R, Gornicki P (2003) Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci 164(1):43–49CrossRefGoogle Scholar
  13. 13.
    Missaoui A, Paterson A, Bouton J (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Ev 53(6):1291–1302CrossRefGoogle Scholar
  14. 14.
    Zalapa J, Price D, Kaeppler S, Tobias C, Okada M, Casler M (2011) Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 122(4):805–817PubMedCrossRefGoogle Scholar
  15. 15.
    Okada M, Lanzatella C, Tobias C (2011) Single-locus EST-SSR markers for characterization of population genetic diversity and structure across ploidy levels in switchgrass (Panicum virgatum L.). Genet Resour Crop Ev 58(6):919–931CrossRefGoogle Scholar
  16. 16.
    Cortese L, Honig J, Miller C, Bonos S (2010) Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenerg Res 3(3):262–271CrossRefGoogle Scholar
  17. 17.
    Narasimhamoorthy B, Saha M, Swaller T, Bouton J (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg Res 1(2):136–146CrossRefGoogle Scholar
  18. 18.
    Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23(2):60–66PubMedCrossRefGoogle Scholar
  19. 19.
    Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47(6):2211–2227CrossRefGoogle Scholar
  20. 20.
    Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48(4):1312–1320CrossRefGoogle Scholar
  21. 21.
    Taliaferro C (1998) Breeding and selection of new switchgrass varieties for increased biomass production. Annual report from Oklahoma State Univ. to Oak Ridge National Laboratory, ORNL/SUB-02-19XSY162C/01. Oak Ridge, TN: Oak Ridge National Laboratory. Online at
  22. 22.
    Petersen KK, Hagberg P, Kristiansen K (2002) In vitro chromosome doubling of Miscanthus sinensis. Plant Breed 121(5):445–450CrossRefGoogle Scholar
  23. 23.
    Leblanc O, Duenas M, Hernandez M, Bello S, Garcia V, Berthaud J, Savidan Y (1995) Chromosome doubling in tripsacum—the production of artificial, sexual tetraploid plants. Plant Breed 114(3):226–230CrossRefGoogle Scholar
  24. 24.
    Chen JF, Kirkbride JH (2000) A new synthetic species of cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52(4):315–319CrossRefGoogle Scholar
  25. 25.
    Rhoades MM, Ellen D (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54(2):505–522PubMedCentralPubMedGoogle Scholar
  26. 26.
    Hansen NJP, Andersen SB (1998) In vitro chromosome doubling with colchicine during microspore culture in wheat (Triticum aestivum L.). Euphytica 102(1):101–108CrossRefGoogle Scholar
  27. 27.
    Yu CY, Kim HS, Rayburn AL, Widholm JM, Juvik JA (2009) Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. GCB Bioenergy 1(6):404–412CrossRefGoogle Scholar
  28. 28.
    Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15(10):2236–2239PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci U S A 18(3):222–229PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Fankhauser G, Watson RC (1942) Heat-Induced triploidy in the newt, Triturus Viridescens. Proc Natl Acad Sci U S A 28(10):436–440PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kato A, Birchler JA (2006) Induction of tetraploid derivatives of maize inbred lines by nitrous oxide gas treatment. J Hered 97(1):39–44PubMedCrossRefGoogle Scholar
  32. 32.
    Dibyendu T (2010) Cytogenetic characterization of induced autotetraploids in grass pea (Lathyrus sativus L.). Caryologia 63(1):62–72CrossRefGoogle Scholar
  33. 33.
    Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107(7):1195–1200PubMedCrossRefGoogle Scholar
  34. 34.
    Kato A (1999) Air drying method using nitrous oxide for chromosome counting in maize. Biotech Histochem 74(3):160–166PubMedCrossRefGoogle Scholar
  35. 35.
    Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101(37):13554–13559PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Xu B, Huang L, Shen Z, Welbaum GE, Zhang X, Zhao B (2011) Selection and characterization of a new switchgrass (Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Sci Hortic 129(4):854–861CrossRefGoogle Scholar
  37. 37.
    Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 11(7):1869–1885CrossRefGoogle Scholar
  38. 38.
    Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110(8):1372–1383PubMedCrossRefGoogle Scholar
  39. 39.
    Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2):455–461CrossRefGoogle Scholar
  40. 40.
    Huang L-K, Bughrara SS, Zhang X-Q, Bales-Arcelo CJ, Bin X (2011) Genetic diversity of switchgrass and its relative species in Panicum genus using molecular markers. Biochem Syst Ecol 39(4):685–693CrossRefGoogle Scholar
  41. 41.
    Beck SL, Dunlop RW, Fossey A (2003) Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Bot J Linn Soc 141(2):177–181CrossRefGoogle Scholar
  42. 42.
    Gu XF, Yang AF, Meng H, Zhang JR (2005) In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua. Plant Cell Rep 24(11):671–676PubMedCrossRefGoogle Scholar
  43. 43.
    Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES (2010) Genome-size variation in switchgrass (panicum Virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome 3(3):130–141CrossRefGoogle Scholar
  44. 44.
    Rahman M, McVetty PB, Li G (2007) Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115(8):1101–1107PubMedCrossRefGoogle Scholar
  45. 45.
    Tu S, Luan L, Liu Y, Long W, Kong F, He T, Xu Q, Yan W, Yu M (2007) Production and heterosis analysis of rice autotetraploid hybrids. Crop Sci 47(6):2356–2363CrossRefGoogle Scholar
  46. 46.
    Chavez DJ, Lyrene PM (2009) Production and identification of colchicine-derived tetraploid vaccinium darrowii and its use in breeding. J Am Soc Hortic Sci 134(3):356–363Google Scholar
  47. 47.
    Dweikat IM, Lyrene PM (1991) Induced tetraploidy in a Vaccinium elliottii facilitates crossing with cultivated highbush blueberry. J Am Soc Hortic Sci 116(6):1063–1066Google Scholar
  48. 48.
    Baum M, Lagudah ES, Appels R (1992) Wide crosses in cereals. Annu Rev Plant Physiol Plant Mol Biol 43(1):117–143CrossRefGoogle Scholar
  49. 49.
    Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289(5488):2335–2338PubMedCrossRefGoogle Scholar
  50. 50.
    Casler M (2012) Switchgrass breeding, genetics, and genomics. In: Monti A (ed) Switchgrass, green energy and technology. Springer-Verlag, London, pp 29–53Google Scholar
  51. 51.
    Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186(1):5–17PubMedCrossRefGoogle Scholar
  52. 52.
    Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR, Jiang J (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176(4):2055–2067PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Yu Z, Haberer G, Matthes M, Rattei T, Mayer KF, Gierl A, Torres-Ruiz RA (2010) Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Natl Acad Sci U S A 107(41):17809–17814PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel L, Wendel JF (2008) Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci U S A 105(16):6191–6195PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zhiyong Yang
    • 1
    • 2
  • Zhengxing Shen
    • 1
  • Hannah Tetreault
    • 3
  • Loretta Johnson
    • 3
  • Bernd Friebe
    • 4
  • Taylor Frazier
    • 1
  • Lin-kai Huang
    • 1
    • 5
  • Caitlin Burklew
    • 1
  • Xin-Quan Zhang
    • 5
  • Bingyu Zhao
    • 1
    • 6
  1. 1.Department of HorticultureVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Institute of Critical Technology and Applied Sciences (ICTAS)Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Division of BiologyKansas State UniversityManhattanUSA
  4. 4.Department of Plant PathologyKansas State UniversityManhattanUSA
  5. 5.Department of Grassland Science, Animal Science and Technology CollegeSichuan Agricultural UniversityYa-anChina
  6. 6.Department of HorticultureVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations