BioEnergy Research

, Volume 6, Issue 1, pp 292–299 | Cite as

Ethanol Production from High-Solid SSCF of Alkaline-Pretreated Corncob Using Recombinant Zymomonas mobilis CP4

  • Rongxin Su
  • Yuanyuan Ma
  • Wei Qi
  • Mingjia Zhang
  • Fang Wang
  • Ruoyu Du
  • Jifeng Yang
  • Minhua ZhangEmail author
  • Zhimin HeEmail author


In this work, Zymomonas mobilis was genetically improved for pentose utilization to increase the final ethanol concentration. It showed good fermentation ability on both soluble sugar mixture and lignocellulose. Nearly all the glucose and xylose in sugar mixture can be consumed, corresponding to 86 % of theoretic ethanol yield. Simultaneous saccharification and co-fermentation (SSCF) of NaOH-pretreated corncob was then carried out in a high dry matter (DM) loading of 15–25 w/v%. At the DM loading of 15 %, the suitable operating conditions were determined, i.e., Z. mobilis loading of 0.30 g dry weight/L at 30 °C (pH 5.5), under which the ethanol concentration reached 49.2 g/L. Higher final ethanol concentrations were obtained when SSCF was operated at the fed-batch mode. Several amounts of substrate (1 % to 10 %) were added, and the highest final ethanol concentration (60.5 g/L) was obtained at 10 % DM addition.


Simultaneous saccharification and co-fermentation Recombinant Zymomonas mobilis Corncob Bioethanol Xylose fermentation Lignocellulose Cellulose High solids 



The authors acknowledge the financial supports received from the National Natural Science Foundation of China (No. 21276192, 20976125, and 30900033), Open Funding Project of the State Key Laboratory of Bioreactor Engineering, and the Ministry of Education (Grant Nos. NCET-11-0372, 20110032130004 and B06006).

Supplementary material

12155_2012_9256_MOESM1_ESM.doc (34 kb)
ESM 1 (DOC 34 kb)


  1. 1.
    Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556PubMedCrossRefGoogle Scholar
  2. 2.
    Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7PubMedCrossRefGoogle Scholar
  3. 3.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biot 59:618–628CrossRefGoogle Scholar
  4. 4.
    Georgieva TI, Hou XR, Hilstrom T, Ahring BK (2008) Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading. Appl Biochem Biotech 148:35–44CrossRefGoogle Scholar
  5. 5.
    Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117PubMedCrossRefGoogle Scholar
  6. 6.
    Ohgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenerg 30:863–869CrossRefGoogle Scholar
  7. 7.
    Zhang MJ, Wang F, Su RX, Qi W, He ZM (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresourc Technol 101:4959–4964CrossRefGoogle Scholar
  8. 8.
    Krishnan MS, Blanco M, Shattuck CK, Nghiem NP, Davison BH (2000) Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5). Appl Biochem Biotech 84–6:525–541CrossRefGoogle Scholar
  9. 9.
    Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang JY, Shao XJ, Lynd LR (2009) Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. part II: investigation of discrepancies between predicted and observed performance at high solids concentration. Biotechnol Bioeng 104:932–938PubMedCrossRefGoogle Scholar
  11. 11.
    Huang RL, Su RX, Qi W, He ZM (2011) Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. Bioenerg Res 4:225–245CrossRefGoogle Scholar
  12. 12.
    Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC (2010) Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl Microbiol Biot 88:1103–1112CrossRefGoogle Scholar
  13. 13.
    Qureshi N, Dien BS, Nichols NN, Saha BC, Cotta MA (2006) Genetically engineered Escherichia coli for ethanol production from xylose—substrate and product inhibition and kinetic parameters. Food Bioprod Process 84:114–122CrossRefGoogle Scholar
  14. 14.
    Rudolf A, Baudel H, Zacchi G, Hahn-Hagerdal B, Liden G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790PubMedCrossRefGoogle Scholar
  15. 15.
    Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hagerdal B (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biot 82:123–130CrossRefGoogle Scholar
  16. 16.
    Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243PubMedCrossRefGoogle Scholar
  17. 17.
    Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Biofuels 108:263–288CrossRefGoogle Scholar
  18. 18.
    Lawford HG, Rousseau JD, McMillan JD (1997) Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas. Appl Biochem Biotech 63–5:269–286CrossRefGoogle Scholar
  19. 19.
    Lawford HG, Rousseau JD (2002) Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Appl Biochem Biotech 98:429–448CrossRefGoogle Scholar
  20. 20.
    Asghari A, Bothast RJ, Doran JB, Ingram LO (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J Ind Microbiol Biotechnol 16:42–47Google Scholar
  21. 21.
    McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotech 77–9:649–665CrossRefGoogle Scholar
  22. 22.
    Okamoto T, Nakamura K (1992) Simple and highly efficient transformation method for Zymomonas mobilis: electroporation. Biosci Biotech Biochem 56:833–833CrossRefGoogle Scholar
  23. 23.
    Zhang MJ, Su RX, Qi W, He ZM (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotech 160:1407–1414CrossRefGoogle Scholar
  24. 24.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al. (2008) Determination of structural carbohydrates and lignin in biomass. http://wwwnrelgov/biomass/pdfs/42618pdf.
  25. 25.
    Olofsson K, Rudolf A, Liden G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120PubMedCrossRefGoogle Scholar
  26. 26.
    Gao Q, Zhang M, McMillan JD, Kompala DS (2002) Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures. Appl Biochem Biotech 98:341–355CrossRefGoogle Scholar
  27. 27.
    Lawford HG, Rousseau JD (2001) Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676. Appl Biochem Biotech 91–3:117–131CrossRefGoogle Scholar
  28. 28.
    Barbosa MDFS, Beck MJ, Fein JE, Potts D, Ingram LO (1992) Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl Environ Microb 58:1382–1384Google Scholar
  29. 29.
    Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828PubMedCrossRefGoogle Scholar
  30. 30.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedCrossRefGoogle Scholar
  31. 31.
    Lee KJ, Skotnicki ML, Tribe DE, Rogers PL (1981) The effect of temperature on the kinetics of ethanol production by strains of Zymomonas mobilis. Biotechnol Lett 3:291–296CrossRefGoogle Scholar
  32. 32.
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824PubMedCrossRefGoogle Scholar
  33. 33.
    Tao F, Miao JY, Shi GY, Zhang KC (2005) Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem 40:183–187CrossRefGoogle Scholar
  34. 34.
    King FG, Hossain MA (1982) The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotechnol Lett 4:531–536CrossRefGoogle Scholar
  35. 35.
    Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedGoogle Scholar
  36. 36.
    Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296PubMedCrossRefGoogle Scholar
  37. 37.
    Lawford HG, Rousseau JD (1999) The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations. Appl Biochem Biotech 77–9:235–249CrossRefGoogle Scholar
  38. 38.
    DiMarco AA, Romano AH (1985) D-glucose transport system of Zymomonas mobilis. Appl Environ Microb 49:151–157Google Scholar
  39. 39.
    Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hagerdal B et al (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126:488–498PubMedCrossRefGoogle Scholar
  40. 40.
    Geddes GC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rongxin Su
    • 1
  • Yuanyuan Ma
    • 2
  • Wei Qi
    • 1
  • Mingjia Zhang
    • 1
  • Fang Wang
    • 1
  • Ruoyu Du
    • 1
  • Jifeng Yang
    • 1
  • Minhua Zhang
    • 2
    Email author
  • Zhimin He
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPR China
  2. 2.Biomass Conversion Laboratory of Tianjin University R&D Center for Petrochemical TechnologyTianjin UniversityTianjinPR China

Personalised recommendations