BioEnergy Research

, Volume 6, Issue 1, pp 276–291

Perennial Biomass Grasses and the Mason–Dixon Line: Comparative Productivity across Latitudes in the Southern Great Plains

  • J. R. Kiniry
  • L. C. Anderson
  • M.-V. V. Johnson
  • K. D. Behrman
  • M. Brakie
  • D. Burner
  • R. L. Cordsiemon
  • P. A. Fay
  • F. B. Fritschi
  • J. H. HouxIII
  • C. Hawkes
  • T. Juenger
  • J. Kaiser
  • T. H. Keitt
  • J. Lloyd-Reilley
  • S. Maher
  • R. Raper
  • A. Scott
  • A. Shadow
  • C. West
  • Y. Wu
  • L. Zibilske
Article

Abstract

Understanding latitudinal adaptation of switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus J. M. Greef & Deuter ex Hodk. & Renvoize) to the southern Great Plains is key to maximizing productivity by matching each grass variety to its optimal production environment. The objectives of this study were: (1) to quantify latitudinal variation in production of representative upland switchgrass ecotypes (Blackwell, Cave-in-Rock, and Shawnee), lowland switchgrass ecotypes (Alamo, Kanlow), and Miscanthus in the southern half of the US Great Plains and (2) to investigate the environmental factors affecting yield variation. Leaf area and yield were measured on plots at 10 locations in Missouri, Arkansas, Oklahoma, and Texas. More cold winter days led to decreased subsequent Alamo switchgrass yields and increased subsequent upland switchgrass yields. More hot-growing season days led to decreased Kanlow and Miscanthus yields. Increased drought intensity also contributed to decreased Miscanthus yields. Alamo switchgrass had the greatest radiation use efficiency (RUE) with a mean of 4.3 g per megajoule intercepted PAR and water use efficiency (WUE) with a mean of 4.5 mg of dry weight per gram of water transpired. The representative RUE values for other varieties ranged from 67 to 80 % of Alamo’s RUE value and 67 to 87 % of Alamo’s WUE. These results will provide valuable inputs to process-based models to realistically simulate these important perennial grasses in this region and to assess the environmental impacts of production on water use and nutrient demands. In addition, it will also be useful for landowners and companies choosing the most productive perennial grasses for biofuel production.

Keywords

Biofuel grasses Switchgrass Miscanthus Simulation modeling 

Supplementary material

12155_2012_9254_MOESM1_ESM.docx (28 kb)
Table S1Loadings of environmental variables to create the first two principal components (DOCX 27 kb)
12155_2012_9254_MOESM2_ESM.docx (29 kb)
Table S2Principal component analysis results with factors affecting final biomass yield each year (DOCX 28 kb)
12155_2012_9254_MOESM3_ESM.docx (186 kb)
Figure S1Regional adaptation zones of biofuel crops (Oak Ridge National Laboratory, cited in [30]; DOCX 186 kb)
12155_2012_9254_MOESM4_ESM.docx (903 kb)
Figure S2DOCX 903 kb

References

  1. 1.
    Akhter J, Mahmood K, Tasneem MA, Naqvi MH, Malik KA (2003) Comparative water-use efficiency of Sporobolus arabicus and Leptochloa fusca and its relation with carbon-isotope discrimination under semi-arid conditions. Plant and Soil 249(2):263–269CrossRefGoogle Scholar
  2. 2.
    Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89CrossRefGoogle Scholar
  3. 3.
    Casler MD, Vogel KP, Taliagerro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303Google Scholar
  4. 4.
    Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261–2273CrossRefGoogle Scholar
  5. 5.
    Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al (2007) Latitudinal and longitudinal adaptation of switchgrass populations. Crop Sci 47:2249–2260CrossRefGoogle Scholar
  6. 6.
    Clifton-Brown JC, Long SP, Jørgensen U (2001) Miscanthus productivity. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James and James, London, pp 46–67Google Scholar
  7. 7.
    Cosentino SL, Patanè C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu in a Mediterranean environment. Ind Crops Prod 25:75–88CrossRefGoogle Scholar
  8. 8.
    Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780PubMedCrossRefGoogle Scholar
  9. 9.
    Cornelius DR, Johnston CO (1941) Differences in plant type and reaction to rust among several collections of Panicum virgatum L. Agron J 33:115–1124CrossRefGoogle Scholar
  10. 10.
    Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115PubMedCrossRefGoogle Scholar
  11. 11.
    Eggemeyer KD, Awada T, Wedin DA, Harvey FE, Zhou X (2006) Ecophysiology of two native invasive woody species and two dominant warm-season grasses in the semiarid grassland of the Nebraska sandhills. Int J Plant Sci 167(5):991–999CrossRefGoogle Scholar
  12. 12.
    Fairbourn ML (1982) Water use by forage species. Agron J 74:62–66CrossRefGoogle Scholar
  13. 13.
    Fike HF, Parrish DJ, Wolf DD, Balasko JA, Green JT, Rasnake M et al (2006) Switchgrass production for the upper southeastern USA: influence of cultivar and cutting frequency on biomass yields. Biomass Bioenergy 30:207–213CrossRefGoogle Scholar
  14. 14.
    Heaton EA, Dohleman FC, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14:1–15CrossRefGoogle Scholar
  15. 15.
    Jones CA, Kiniry JR (1986) CERES-Maize: a simulation model of maize growth and development. A&M, Texas, p 194Google Scholar
  16. 16.
    Kiniry JR, Ritchie JT, Musser RL, Flint EP, Iwig WC (1983) The photoperiod sensitive interval in maize. Agron J 75:687–690CrossRefGoogle Scholar
  17. 17.
    Kiniry JR, Williams JR, Gassman PW, Debaeke P (1992) A general, process-oriented model for two competing plant species. Trans ASAE 35(3):801–810Google Scholar
  18. 18.
    Kiniry JR, Tischler CR, Van Esbroech GA (1999) Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 17:95–112CrossRefGoogle Scholar
  19. 19.
    Kiniry JR, Lynd L, Greene N, Johnson Mari-Vaughn V, Casler M, Laser MS (2008) Biofuels and water use: comparison of maize and switchgrass and general perspectives. In: Wright JH, Evans DA (eds) New research on biofuels. Nova Science, New YorkGoogle Scholar
  20. 20.
    Kiniry JR, Johnson M-VV, Bruckerhoff SB, Kaiser JU, Cordsiemon RS, Harmel RD (2012) Clash of the Titans: comparing productivity via radiation use efficiency for two grass giants of the biofuel field. BioEnergy Res 5(1):41–48CrossRefGoogle Scholar
  21. 21.
    Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23:433–442CrossRefGoogle Scholar
  22. 22.
    Madakadze IC, Stewart K, Peterson PR, Coulman BE, Samson R, Smith DL (1998) Light interception, use-efficiency and energy yield of switchgrass (Panicum virgatum L.) grown in a short season area. Biomass Bioenergy 15:475–482CrossRefGoogle Scholar
  23. 23.
    McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535CrossRefGoogle Scholar
  24. 24.
    McMillan C, Weiler J (1959) Cytogeography of Panicum virgatum in central North America. Am J Bot 46:590–593CrossRefGoogle Scholar
  25. 25.
    Moser LE, Vogel KP (1995) Switchgrass, big bluestem, and indiangrass. In: Barnes RF et al (eds) Forages, an introduction to grassland agriculture, vol 1, 5th edn. Iowa State University Press, Ames, pp 409–421Google Scholar
  26. 26.
    Nelson JA, Morgan JA, LeCain DR, Mosier AR, Milchunas DG, Parton BA (2004) Elevated CO2 increases soil moisture and enhances plant water relations in a long-term study in semi-arid shortgrass steppe of Colorado. Plant Soil 259:169–179CrossRefGoogle Scholar
  27. 27.
    Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical models: regression, analysis of variance, and experimental designs. Irwin, Homewood, IL, p 1127Google Scholar
  28. 28.
    Nippert JB, Fay PA, Knapp AK (2007) Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. Environ Exp Bot 60:412–420CrossRefGoogle Scholar
  29. 29.
    [NOAA] National Oceanic and Atmospheric Administration (2012) NOAA National Weather Service, Weather Downloads (ASCII File), downloaded from NOAA website. http://www.ncdc.noaa.gov/oa/climate/stationlocator.html. Accessed: 11 May 2012
  30. 30.
    Porter JR, Howell FM, Mason PB, Blanchard TC (2009) Existing biomass infrastructure and theoretical potential biomass production in the US. J Maps. doi:10.4113/jom.2009.1067
  31. 31.
    Sanderson MA, Reed RL, Ocumpaugh WL, Hussey MA, Van Esbroeck G, Read JC et al (1999) Switchgrass cultivars and germplasm for biomass feedstock production in Texas. Bioresour Technol 67:209–219CrossRefGoogle Scholar
  32. 32.
    SAS Inst (1989) SAS/STAT user’s guide. Version 6. Vol 2, 4th edn. SAS Inst., CaryGoogle Scholar
  33. 33.
    Sladden SE, Bransby DI, Aiken GE (1991) Biomass yield, composition and production costs for eight switchgrass varieties in Alabama. Biomass Bioenergy 1:199–122CrossRefGoogle Scholar
  34. 34.
    Vogel KP, Schmer M, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Publications from USDA-ARS/UNL Faculty. Paper 206Google Scholar
  35. 35.
    Williams JR, Jones CA, Kiniry JR, Spanel DA (1989) The EPIC crop growth model. Trans ASAE 32:497–511Google Scholar
  36. 36.
    Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 32(2):497–511Google Scholar
  37. 37.
    Wullschleger SD, Sanderson MA, McLaughlin SB, Biradir DP, Rayburn AL (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36:306–312CrossRefGoogle Scholar
  38. 38.
    Xu B, Li F, Shan L, Ma Y, Ichizen N, Huang J (2006) Gas exchange, biomass partition, and water relationships of three grass seedlings under water stress. Weed Biol and Manage 6:79–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • J. R. Kiniry
    • 1
  • L. C. Anderson
    • 2
  • M.-V. V. Johnson
    • 3
  • K. D. Behrman
    • 1
    • 2
  • M. Brakie
    • 4
  • D. Burner
    • 5
    • 6
  • R. L. Cordsiemon
    • 8
  • P. A. Fay
    • 1
  • F. B. Fritschi
    • 9
  • J. H. HouxIII
    • 9
  • C. Hawkes
    • 10
  • T. Juenger
    • 10
  • J. Kaiser
    • 8
  • T. H. Keitt
    • 10
  • J. Lloyd-Reilley
    • 11
  • S. Maher
    • 11
  • R. Raper
    • 7
  • A. Scott
    • 12
  • A. Shadow
    • 4
  • C. West
    • 13
  • Y. Wu
    • 14
  • L. Zibilske
    • 15
  1. 1.USDA-ARSTempleUSA
  2. 2.formerly with University of TexasAustinUSA
  3. 3.USDA-NRCSTempleUSA
  4. 4.USDA-NRCS East Texas Plant Materials CenterNacogdochesUSA
  5. 5.USDA-ARSHouomaUSA
  6. 6.formerly USDA-ARSBoonevilleUSA
  7. 7.Oklahoma State University, Stillwater, formerly USDA-ARSBoonevilleUSA
  8. 8.USDA-NRCS Elsberry Plant Materials CenterElsberryUSA
  9. 9.University of MissouriColumbiaUSA
  10. 10.University of TexasAustinUSA
  11. 11.USDA-NRCS Kika de la Garza Plant Materials CenterKingsvilleUSA
  12. 12.Rio Farms, Inc.Monte AltoUSA
  13. 13.Texas Tech University, Lubbock, formerly with University of ArkansasFayettevilleUSA
  14. 14.Oklahoma State UniversityStillwaterUSA
  15. 15.formerly with USDA-ARSWeslacoUSA

Personalised recommendations