BioEnergy Research

, Volume 5, Issue 3, pp 621–635

Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results

  • Hans Langeveld
  • Foluke Quist-Wessel
  • Ioannis Dimitriou
  • Pär Aronsson
  • Christel Baum
  • Ulrich Schulz
  • Andreas Bolte
  • Sarah Baum
  • Jörg Köhn
  • Martin Weih
  • Holger Gruss
  • Peter Leinweber
  • Norbert Lamersdorf
  • Paul Schmidt-Walter
  • Göran Berndes
Article

Abstract

Short rotation coppice (SRC) systems can play a role as feedstock for bioenergy supply contributing to EU energy and climate policy targets. A scenario depicting intensive arable crop cultivation in a homogeneous landscape (lacking habitat structures) was compared to a scenario including SRC cultivation on 20 % of arable land. A range of indicators was selected to assess the consequences of SRC on soil, water and biodiversity, using data from the Rating-SRC project (Sweden and Germany). The results of the assessment were presented using spider diagrams. Establishment and use of SRC for bioenergy has both positive and negative effects. The former include increased carbon sequestration and reduced GHG emissions as well as reduced soil erosion, groundwater nitrate and surface runoff. SRC can be used in phytoremediation and improves plant and breeding bird biodiversity (exceptions: grassland and arable land species) but should not be applied in dry areas or on soils high in toxic trace elements (exception: cadmium). The scenario-based analysis was found useful for studying the consequences of SRC cultivation at larger scales. Limitations of the approach are related to data requirements and compatibility and its restricted ability to cover spatial diversity and dynamic processes. The findings should not be generalised beyond the representativeness of the data used.

Keywords

Biodiversity Bioenergy Short rotation coppice Soil quality Sustainability indicators Water quality 

References

  1. 1.
    European Council (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/ECGoogle Scholar
  2. 2.
    Berndes G, Hansson J, Egeskog A, Johnsson F (2010) Strategies for 2nd generation biofuels in EU—co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass Bioenergy 34:227–236CrossRefGoogle Scholar
  3. 3.
    Dimitriou I, Rosenqvist H, Berndes G (2011) Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenergy 35:4613–4618CrossRefGoogle Scholar
  4. 4.
    Dimitriou I, Baum Ch, Baum S, Busch G, Schulz U, Köhn J, et al(2011) Quantifying environmental effects of Short Rotation Coppice (SRC) on biodiversity, soil and water. IEA Bioenergy Task43Google Scholar
  5. 5.
    Lovett AA, Sünnenberg GM, Richter GM, Dailey AG, Riche AB, Karp A (2009) Land use implications of increased biomass production identified by GIS-based sustainability and yield mapping for miscanthus in England. Bioenergy Res 2(1):17–28CrossRefGoogle Scholar
  6. 6.
    FNR/Hajkova (2011) Pappeln mit neuen Methoden züchten. Mitteilungen, Aktuelles aus der Presse, Gesunde Pflanzen 63:205–209. doi:10.1007/s10343-011-0267-5
  7. 7.
    Fischer G, Prieler S, van Velthuizen H, Lensink SH, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part I: land productivity potentials. Biomass Bioenergy 34:159–172CrossRefGoogle Scholar
  8. 8.
    Fischer G, Prieler S, van Velthuizen H, Berndes G, Faaij A, Londo M et al (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, Part II: land use scenarios. Biomass Bioenergy 34:173–187CrossRefGoogle Scholar
  9. 9.
    Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:271–290CrossRefGoogle Scholar
  10. 10.
    Karp A, Haughton AJ, Bohan DA, Lovett AA, Bond AJ, Dockerty T et al (2009) Perennial energy crops: implications and potential. In: Winter M, Lobley M (eds) What is land for? The food, fuel and climate change debate. Earthscan, London, pp 47–72Google Scholar
  11. 11.
    Londo M, Roose M, Dekker J, de Graaf H (2004) Willow short-rotation coppice in multiple land-use systems: evaluation of four combination options in the Dutch context. Biomass Bioenergy 27:205–221CrossRefGoogle Scholar
  12. 12.
    Börjesson P (1999) Environmental effects of energy crop cultivation in Sweden. I: identification and quantification. Biomass Bioenergy 16:137–154CrossRefGoogle Scholar
  13. 13.
    EEA (2007) Estimating the environmentally compatible bioenergy potential from agriculture. European Environment Agency (EEA) Technical Report No. 12. CopenhagenGoogle Scholar
  14. 14.
    Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613PubMedCrossRefGoogle Scholar
  15. 15.
    Berndes G, Fredriksson F, Börjesson P (2004) Cadmium accumulation and Salix based phytoextraction on arable land in Sweden. Agric Ecosyst Environ 103(1):207–223CrossRefGoogle Scholar
  16. 16.
    Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438CrossRefGoogle Scholar
  17. 17.
    Dimitriou H, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35:835–842CrossRefGoogle Scholar
  18. 18.
    Dimitriou I, Aronsson P (2011) Wastewater and sewage sludge application to willows and poplars grown in lysimeters—plant response and treatment efficiency. Biomass Bioenergy 35:161–170CrossRefGoogle Scholar
  19. 19.
    Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95CrossRefGoogle Scholar
  20. 20.
    Weih M, Karacic A, Munkert H, Verwijst T, Diekmann M (2003) Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic Appl Ecol 4:149–156CrossRefGoogle Scholar
  21. 21.
    Londo M, Dekker J, ter Kerus W (2005) Willow short-rotation coppice for energy and breeding birds: an exploration of potentials in relation to management. Biomass Bioenergy 28:281–293CrossRefGoogle Scholar
  22. 22.
    Weih M (2009) Willow short rotation coppice commercially grown on agricultural land in Sweden—possibilities for improvement of biodiversity and landscape design. IEA Technical Review No. 4, 36 p. http://www.shortrotationcrops.org). Accessed 30 Nov 2011
  23. 23.
    Baum S, Weih M, Busch G, Kroiher F, Bolte A (2009) The impact of Short Rotation Coppice plantations on phytodiversity. vTI Agric For Res 3:163–170Google Scholar
  24. 24.
    Schulz U, Brauner O, Gruß H (2009) Animal diversity on short-rotation coppices—a review. vTI Agric For Res 3:171–181Google Scholar
  25. 25.
    Berg A (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90:265–276CrossRefGoogle Scholar
  26. 26.
    Riffell S, Verschuyl J, Miller D, Wigleys TB (2011) A meta-analysis of bird and mammal response to short-rotation woody crops. GCB Bioenergy 3:313–321CrossRefGoogle Scholar
  27. 27.
    Dobson AP, Rodriguez JP, Roberts WM, Wilcove DS (1997) Geographic distribution of endangered species in the United States. Science 275:550–553. doi:10.1126/science.275.5299.550 PubMedCrossRefGoogle Scholar
  28. 28.
    Berndes G, Bird N, Cowie A (2011) Bioenergy, land use change and climate change mitigation. Background Technical Report. IEA Bioenergy: ExCo:2011:04Google Scholar
  29. 29.
    Bond AJ, Dockerty T, Lovett A, Riche AB, Haughton AJ, Bohan BA et al (2010) Learning how to deal with values, frames and governance in sustainability appraisal. Reg Stud 45:1157–1170CrossRefGoogle Scholar
  30. 30.
    Baum S, Bolte A, Weih M (2012) Higher value of short rotation coppice plantations for phytodiversity in rural landscape. GCB Bioenergy. doi:10.1111/j.1757-1707.2012.01162.x
  31. 31.
    Dimitriou I, Mola-Yudego B, Aronsson P, Eriksson J (2012) Changes in some soil parameters in short-rotation coppice plantations on agricultural land in Sweden. BioEnergy Res (this issue)Google Scholar
  32. 32.
    WBGU (2004) World in transition—towards sustainable energy systems. Flagship Report 2003. Earthscan, LondonGoogle Scholar
  33. 33.
    Fee E, Johansson DJA, Lowe J, Marbaix P, Matthews B, Meinshausen M (2010) Scientific perspectives after Copenhagen. Information reference document commissioned by the EU’s Climate Change Science Experts on behalf of EU member statesGoogle Scholar
  34. 34.
    Edwards R, Mulligan D, Marelli L (2010) Indirect land use change from increased biofuels demand. JRC, IspraGoogle Scholar
  35. 35.
    Berndes G, Hansson J, Egeskog A, Odenberger M (2010) Bioenergy strategies for Europe: synergies and competition between the stationary and transport sectors. ELOBIO WG6 reportGoogle Scholar
  36. 36.
    IPCC (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  37. 37.
    Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 5:431–436CrossRefGoogle Scholar
  38. 38.
    Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenergy 6:63–79CrossRefGoogle Scholar
  39. 39.
    Jug A, Hofmann-Schielle C, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany III. Soil ecological effects. For Ecol Manag 121:85–99CrossRefGoogle Scholar
  40. 40.
    Matthews RB, Grogan P (2001) Potential C-sequestration rates under short-rotation coppiced willow and Miscanthus biomass crops: a modelling study. Asp Appl Biol 65:303–312Google Scholar
  41. 41.
    Kahle P, Hildebrand E, Baum C, Boelcke B (2007) Long-term effects of short rotation forestry with willows and poplar on soil properties. Arch Agron Soil Sci 53:673–682CrossRefGoogle Scholar
  42. 42.
    Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Ecol Manag 33:299–308Google Scholar
  43. 43.
    Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122:325–339CrossRefGoogle Scholar
  44. 44.
    Garten CT, Wullschleger SD, Classen AT (2011) Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 35:214–226CrossRefGoogle Scholar
  45. 45.
    Riddell-Black DM (1994) Heavy metal uptake by fast growing willow species. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Swedish University of Agricultural Sciences, Report 50, pp 133–144Google Scholar
  46. 46.
    Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249(1):127–137CrossRefGoogle Scholar
  47. 47.
    Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut 142(1):160–169PubMedCrossRefGoogle Scholar
  48. 48.
    Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced Cd-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306CrossRefGoogle Scholar
  49. 49.
    Granel T, Robinson B, Mills T, Clothier B, Green S, Fung L (2002) Cd accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation. Aust J Soil Res 40:1331–1337CrossRefGoogle Scholar
  50. 50.
    Landberg T, Greger M (2002) Interclonal variation of heavy metal interactions in Salix viminalis. Environ Toxicol Chem 21:2669–2674PubMedGoogle Scholar
  51. 51.
    Vyslouzilova M, Tlustos P, Szakova J (2003) Cd and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547Google Scholar
  52. 52.
    Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68CrossRefGoogle Scholar
  53. 53.
    EEA (2008) A review of the possible impact of biomass production from agriculture on water. Background paper for the conference “WFD meets CAP—looking for a consistent approach”. European Environmental Agency, Copenhagen, Denmark. http://ecologic-events.eu/cap-wfd/conference2/en/documents/Biomass_WFD_report_V7_final260108-2.pdf. Accessed 28 Oct 2011
  54. 54.
    Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of Short Rotation Coppice cultivation on water issues. LBF 59(3):197–206Google Scholar
  55. 55.
    Dawson M (2007) Short-rotation coppice willow best practice guidelines. Renew ProjectGoogle Scholar
  56. 56.
    Busch G (2009) The impact of short rotation coppice cultivation on groundwater recharge—a spatial (planning) perspective. Landbauforschung—vTI Agric For Res 3(59):207–222Google Scholar
  57. 57.
    Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauser A, Hyvo N, Nen N, Jones MB, Lanigan GJ, Mander U, Monti A, Njakou Djomo S, Valentine J, Walter K, Zegada-Lizaruzu W, Zenone T (2012) Land-use change to bioenergy production In Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4:372–391. doi:10.1111/j.1757-1707.2011.01116.x CrossRefGoogle Scholar
  58. 58.
    Duelli P (1992) Mosaikkonzept und Inseltheorie in der Kulturlandschaft. Verh Ges Ökol 21:379–383 (in German with English summary)Google Scholar
  59. 59.
    Duelli P (1997) Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agric Ecosyst Environ 62:81–91CrossRefGoogle Scholar
  60. 60.
    Baum S, Bolte A, Weih M (2012) Short rotation coppice (SRC) plantations provide additional habitats for vascular plant species in agricultural mosaic landscapes. BioEnergy Res. doi:10.1007/s12155-012-9195-1
  61. 61.
    Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  62. 62.
    Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F et al (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781PubMedCrossRefGoogle Scholar
  63. 63.
    Hanowski JM, Niemi GJ, Christian DC (1997) Influence of within-plantation heterogeneity and surrounding landscape composition on avian communities in hybrid poplar plantations. Conserv Biol 11(4):936–944CrossRefGoogle Scholar
  64. 64.
    Glutz von Blotzheim UN, Bauer KM, Bezzel E (2002) Handbuch der Vögel Mitteleuropas, Bd. 10–13 (CD-Rom). Aula Vogelzug Verlag, WiesbadenGoogle Scholar
  65. 65.
    Südbeck P, Bauer HG, Boschert M, Boye P, Knief W (2007) Rote Liste der Brutvögel Deutschlands, 4. Fassung, 30. November 2007. The Red List of breeding birds of Germany, 4th edn, 30 November 2007.- Ber. Vogelschutz 44: 23–81Google Scholar
  66. 66.
    Jandl G, Baum C, Blumschein A, Leinweber P (2012) The impact of short rotation coppice on the concentrations of aliphatic soil lipids. Plant Soil 350:163–177. doi:10.1007/s11104-011-0892-x CrossRefGoogle Scholar
  67. 67.
    Kahle P, Baum C, Boelcke B, Kohl J, Ulrich R (2010) Vertical distribution of soil properties under short rotation forestry in Northern Germany. J Plant Nutr Soil Sci 173:737–746CrossRefGoogle Scholar
  68. 68.
    Zimmer D, Kiersch K, Baum C, Meissner R, Müller R, Jandl G et al (2011) Scale-dependent variability of As and heavy metals in a River Elbe floodplain. CLEAN - Soil Air Water 39:328–337CrossRefGoogle Scholar
  69. 69.
    Baum C, Hrynkiewicz K, Leinweber P, Meissner R (2006) Heavy metal mobilization and uptake by mycorrhizal and non-mycorrhizal willows (Salix x dasyclados). J Plant Nutr Soil Sci 169:516–522CrossRefGoogle Scholar
  70. 70.
    Baum C, Leinweber P, Weih M, Lamersdorf N, Dimitriou I (2009) Effects of short rotation coppice with willows and poplar on soil ecology (review article). Landbauforschung—vTI Agric For Res 3:183–196Google Scholar
  71. 71.
    Dimitriou I, Aronsson P, Mola-Yudego (2012) Impact of commercial willow Short Rotation Coppice fields on water quality. BioEnergy Res (this issue)Google Scholar
  72. 72.
    Schmidt-Walter P, Lamersdorf N (2012) Biomass production with willow and poplar short rotation coppices on sensitive areas—the impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany. BioEnergy Res (this issue)Google Scholar
  73. 73.
    Sage R, Cunningham M, Boatman N (2006) Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148(1):184–197CrossRefGoogle Scholar
  74. 74.
    Dhondt AA, Sydenstricker KA (2000) Birds breeding in short-rotation woody crops in upstate New York: 1998–2000. Proceedings of the Short-Rotation Woody Crops Operations Working Group, 3rd Conference, Syracus, pp. 137–141Google Scholar
  75. 75.
    Göranson G (1994) Bird faunas of cultivated energy shrub forests at different heights. Biomass Bioenergy 6:49–52CrossRefGoogle Scholar
  76. 76.
    Gruss H, Schulz U (2008) Entwicklung der Brutvogelfauna auf einer Energieholzfläche über den Zeitraum von 13 Jahren. Arch Forstwes Landschaftsökol 42(2):75–82 (in German with English summary)Google Scholar
  77. 77.
    Gruss H, Schulz U (2011) Brutvogelfauna auf Kurzumtriebsplantagen—Besiedlung und Habitateignung verschiedener Strukturtypen. Z Naturschutz Landschaftsplanung 43(7):197–204 (in German with English summary)Google Scholar
  78. 78.
    Sage R, Robertson PA (1996) Factors affecting songbird communities using new short rotation coppice habitats in spring. Bird Study 43(2):201–213CrossRefGoogle Scholar
  79. 79.
    Jedicke E (1995) Naturschutzfachliche Bewertung von Holzfeldern—Schnellwachsende Weichhölzer im Kurzumtrieb, untersucht am Beispiel der Avifauna. Mitt. aus der NNA (1):109–119Google Scholar
  80. 80.
    Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collaps of Europe´s farmland bird populations. Proc Soc Lond B 286:25–29CrossRefGoogle Scholar
  81. 81.
    Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agric Ecosyst Environ 116:189–196CrossRefGoogle Scholar
  82. 82.
    Brauner O, Schulz U (2011) Laufkäfer auf Energieholzplantagen und angrenzenden Vornutzungsflächen (Carabidae)—Untersuchungen in Sachsen und Brandenburg. Ent. Bl. (107): 31–64 (in German with English summary)Google Scholar
  83. 83.
  84. 84.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hans Langeveld
    • 1
  • Foluke Quist-Wessel
    • 1
  • Ioannis Dimitriou
    • 2
  • Pär Aronsson
    • 2
  • Christel Baum
    • 3
  • Ulrich Schulz
    • 4
  • Andreas Bolte
    • 5
    • 6
  • Sarah Baum
    • 5
    • 6
  • Jörg Köhn
    • 7
  • Martin Weih
    • 2
  • Holger Gruss
    • 4
  • Peter Leinweber
    • 3
  • Norbert Lamersdorf
    • 8
  • Paul Schmidt-Walter
    • 8
  • Göran Berndes
    • 9
  1. 1.Biomass ResearchWageningenThe Netherlands
  2. 2.Department of Crop Production EcologySwedish University of Agricultural Sciences (SLU)UppsalaSweden
  3. 3.Chair of Soil Science, Faculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
  4. 4.Faculty of Landscape Management and Nature ConservationUniversity of Applied Sciences Eberswalde (HNEE)EberswaldeGermany
  5. 5.Institute for Forest Ecology and Forest InventoryJohann Heinrich von Thünen-Institute (vTI)EberswaldeGermany
  6. 6.Department of Silviculture and Forest Ecology of Temperate ZonesGeorg-August-University GöttingenGöttingenGermany
  7. 7.Beckmann-Institute for Bio-Based Product Lines (BIOP)HeiligenhagenGermany
  8. 8.Soil Science of Temperate Ecosystems, Büsgen-InstituteGeorg-August-Universität GöttingenGöttingenGermany
  9. 9.Department of Energy and EnvironmentChalmers University of TechnologyGöteborgSweden

Personalised recommendations