BioEnergy Research

, Volume 5, Issue 4, pp 855–865 | Cite as

Identification and Characterization of Four Missense Mutations in Brown midrib 12 (Bmr12), the Caffeic O-Methyltranferase (COMT) of Sorghum

  • Scott E. Sattler
  • Nathan A. Palmer
  • Ana Saballos
  • Ann M. Greene
  • Zhanguo Xin
  • Gautam Sarath
  • Wilfred Vermerris
  • Jeffrey F. Pedersen


Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase, which catalyzes the penultimate step in monolignol biosynthesis. From an EMS-mutagenized TILLING population, four bmr12 mutants were isolated. DNA sequencing identified the four missense mutations in the Bmr12 coding region, which changed evolutionarily conserved amino acids Ala71Val, Pro150Leu, Gly225Asp, and Gly325Ser. The previously characterized bmr12 mutants all contain premature stop codons. These newly identified mutants, along with the previously characterized bmr12-ref, represent the first allelic series of bmr12 mutants available in the same genetic background. The impacts of these newly identified mutations on protein accumulation, enzyme activity, Klason lignin content, lignin subunit composition, and saccharification yield were determined. Gly225Asp mutant greatly reduced protein accumulation, and Pro150Leu and Gly325Ser greatly impaired enzyme activity compared to wild type (WT). All four mutants significantly reduced Klason lignin content and altered lignin composition resulting in a significantly reduced S/G ratio relative to WT, but the overall impact of these mutations was less severe than bmr12-ref. Except for Gly325Ser, which is a hypomorphic mutant, all mutants increased the saccharification yield relative to WT. These mutants represent new tools to decrease lignin content and S/G ratio, possibly leading toward the ability to tailor lignin content and composition in the bioenergy grass sorghum.


Brown midrib bmr12 Caffeic O-methyltransferase (COMT) Lignin Sorghum 



We thank Tammy Gries, Nathan Peroutka-Bigus and John Toy for their technical assistance with experimental data presented in this manuscript, Dr. Lisa Durso for the use of her real-time PCR instrument, and Dr. Heather Van Buskirk for critically reviewing the manuscript. This research was supported by National Institute of Food & Agriculture, Grant 2011-67009-30026 (S.E.S, J.F.P), the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-07ER64458 (W.V., S.E.S, J.F.P), and additional funding from USDA-ARS, CRIS project 5440-21220-024-00D (S.E.S, J.F.P).

Supplementary material

12155_2012_9197_Fig6_ESM.jpg (25 kb)
Supplementary Fig. 1

Expression of recombinant Bmr12 proteins in E. coli. The recombinant proteins were expressed E. coli cells and purified using an N-terminal 6 His tag. See “Materials and Methods” section for further details. a SDS-PAGE analysis of the proteins prior to purification from the induced E. coli cells Lane 1 molecular weight marker, lane 2 WT Bmr12, lane 3 Ala225Asp. Arrows denote the Bmr12 protein and a truncated form occurring in the recombinant protein Ala225Asp, which corresponds to bmr12-30. b SDS-PAGE analysis of the purified proteins from the induced E. coli cells. Lane 1 molecular weight marker, lane 2 WT Bmr12, lane 3 Gly325Ser, lane 4 Pro150Leu, lane 5 Ala71Val, lane 6 Ala71Val Pro150Leu. The recombinant protein containing Gly325Ser corresponds to bmr12-35. The recombinant protein containing both Ala71Val and Pro150Leu amino acid changes corresponds to bmr12-34/820. The molecular weights of the markers are as follows: 200, 116.25, 97.4, 66.2 45.0, 31.0, and 21.5 kDa (JPEG 24 kb)

12155_2012_9197_MOESM1_ESM.eps (1.8 mb)
High resolution image file (EPS 1,872 kb)
12155_2012_9197_MOESM2_ESM.doc (36 kb)
Supplementary Table 1 (DOC 36 kb)


  1. 1.
    Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA, Vogel KP (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35(5):343–354PubMedCrossRefGoogle Scholar
  2. 2.
    Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105(2):464–469PubMedCrossRefGoogle Scholar
  3. 3.
    Jung HJG, Ni W (1998) Lignification of plant cell walls: impact of genetic manipulation. Proc Natl Acad Sci U S A 95(22):12742–12743PubMedCrossRefGoogle Scholar
  4. 4.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  5. 5.
    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761. doi: 10.1038/nbt1316 PubMedCrossRefGoogle Scholar
  6. 6.
    Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Research 2:153–164. doi: 10.1007/s12155-009-9041-2 CrossRefGoogle Scholar
  7. 7.
    Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47(suppl DEC):S147–S153Google Scholar
  8. 8.
    Ruel K, Berrio-Sierra J, Derikvand MM, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau JP (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184(1):99–113PubMedCrossRefGoogle Scholar
  9. 9.
    Piquemal J, Lapierre C, Myton K, O'Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13(1):71–83CrossRefGoogle Scholar
  10. 10.
    Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26(2):205–216PubMedCrossRefGoogle Scholar
  11. 11.
    Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178(3):229–238CrossRefGoogle Scholar
  12. 12.
    Ali F, Scott P, Bakht J, Chen Y, Lübberstedt T (2010) Identification of novel brown midrib genes in maize by tests of allelism. Plant Breed 129(6):724–726CrossRefGoogle Scholar
  13. 13.
    Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). BioEnergy Research 1(3):193–204CrossRefGoogle Scholar
  14. 14.
    Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (Bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7(4):407–416PubMedGoogle Scholar
  15. 15.
    Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269(2):205–214PubMedGoogle Scholar
  16. 16.
    Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 229(1):115–127PubMedCrossRefGoogle Scholar
  17. 17.
    Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ (2005) Comparative effects of the sorghum bmr-6 and bmr-12 genes: I. Forage sorghum yield and quality. Crop Sci 45(6):2234–2239CrossRefGoogle Scholar
  18. 18.
    Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ, Jose HD (2005) Comparative effects of the sorghum bmr-6 and bmr-12 genes: II. Grain yield, stover yield, and stover quality in grain sorghum. Crop Sci 45(6):2240–2245CrossRefGoogle Scholar
  19. 19.
    Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208CrossRefGoogle Scholar
  20. 20.
    Pedersen JF, Funnell DL, Toy JJ, Oliver AL, Grant RJ (2006) Registration of twelve grain sorghum genetic stocks near-isogenic for the brown midrib genes bmr-6 and bmr-12. Crop Sci 46(1):491–492CrossRefGoogle Scholar
  21. 21.
    Xin Z, Wang M, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. BioEnergy Research 2(1):10–16CrossRefGoogle Scholar
  22. 22.
    Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi: 10.1186/1471-2229-8-103 PubMedCrossRefGoogle Scholar
  23. 23.
    Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A Nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol 150(2):584–595. doi: 10.1104/pp.109.136408 PubMedCrossRefGoogle Scholar
  24. 24.
    Palmer NA, Sattler SE, Saathoff AJ, Sarath G (2010) A continuous, quantitative fluorescent assay for plant caffeic acid O-methyltransferases. J Agric Food Chem 58(9):5220–5226PubMedCrossRefGoogle Scholar
  25. 25.
    Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34(2):330–336CrossRefGoogle Scholar
  26. 26.
    Hatfield RD, Jung HJG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65(1):51–58. doi: 10.1002/jsfa.2740650109 CrossRefGoogle Scholar
  27. 27.
    Adney B, Baker J (1996) Measurement of cellulase activities. LAP-006 NREL Analytical ProcedureGoogle Scholar
  28. 28.
    Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556. doi: 10.1038/Nature07723 PubMedCrossRefGoogle Scholar
  29. 29.
    Louie GV, Bowman ME, Tu Y, Mouradov A, Spangenberg G, Noel JP (2010) Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 22(12):4114–4127PubMedCrossRefGoogle Scholar
  30. 30.
    Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14(6):1265–1277PubMedCrossRefGoogle Scholar
  31. 31.
    Do CT, Pollet B, Thevenin J, Sibout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226(5):1117–1129PubMedCrossRefGoogle Scholar
  32. 32.
    Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108(15):6300–6305PubMedCrossRefGoogle Scholar
  33. 33.
    Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119(1):153–163PubMedCrossRefGoogle Scholar
  34. 34.
    Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25(2):193–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Scott E. Sattler
    • 1
    • 2
  • Nathan A. Palmer
    • 1
    • 2
  • Ana Saballos
    • 3
  • Ann M. Greene
    • 3
  • Zhanguo Xin
    • 4
  • Gautam Sarath
    • 1
    • 2
  • Wilfred Vermerris
    • 3
  • Jeffrey F. Pedersen
    • 1
    • 2
  1. 1.Grain Forage and Bioenergy Research UnitUSDA-ARSLincolnUSA
  2. 2.Department of Agronomy and HorticultureUniversity of Nebraska–LincolnLincolnUSA
  3. 3.Agronomy Department and Genetics InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Plant Stress and Germplasm Development Unit, USDA-ARSLubbockUSA

Personalised recommendations