Advertisement

BioEnergy Research

, Volume 5, Issue 2, pp 481–491 | Cite as

Production of Electricity and Butanol from Microalgal Biomass in Microbial Fuel Cells

  • Aino-Maija LakaniemiEmail author
  • Olli H. Tuovinen
  • Jaakko A. Puhakka
Article

Abstract

Chlorella vulgaris (a freshwater microalga) and Dunaliella tertiolecta (a marine microalga) were grown for bulk harvest, and their biomass was tested as feedstock for electricity production in cubic two-chamber microbial fuel cells (MFCs) at 37°C. The anode inoculum was anaerobic consortium from a municipal sewage sludge digester, enriched separately for the two microalgal biomass feedstocks. After repeated subculturing of the two anaerobic enrichments, the maximum power density obtained in MFCs was higher from C. vulgaris (15.0 vs. 5.3 mW m−2) while power generation was more sustained from D. tertiolecta (13 vs. 9.8 J g-1 volatile solids). Anolytes of algal biomass-fed MFCs also contained substantial levels of butanol (8.7–16 mM with C. vulgaris and 2.5–7.0 mM with D. tertiolecta), which represents an additional form of utilizable energy. Carryover of salts from the marine D. tertiolecta biomass slurry resulted in gradual precipitation of Ca and Mg phosphates on the cathode side of the MFC. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling and sequencing of bacterial communities demonstrated the presence of Wolinella succinogenes and Bacteroides and Synergistes spp. as well as numerous unknown bacteria in both enrichments. The D. tertiolecta enriched consortium contained also Geovibrio thiophilus and Desulfovibrio spp. Thus, the results indicate potential for combining fermentation and anaerobic respiration for bioenergy production from photosynthetic biomass.

Keywords

Butanol Electricity Chlorella vulgaris Dunaliella tertiolecta Microalgal biomass Microbial fuel cell 

Notes

Acknowledgments

We thank Christopher J. Hulatt and David N. Thomas, School of Ocean Sciences, Bangor University, for providing the algal biomass samples. This research was funded by the Finnish Funding Agency for Technology and Innovation (Finland Distinguished Professor Programme, 402/06).

Supplementary material

12155_2012_9186_MOESM1_ESM.doc (673 kb)
Fig. S1 Schematic diagram (A) and photograph (B) of the two-chamber MFC configuration used in this study (http://digitalunion.osu.edu/r2/summer07/nskrinak/assembly.html). (DOC 673 kb)
12155_2012_9186_MOESM2_ESM.doc (60 kb)
Fig. S2 Sum of volatile fatty acids (VFAs) and alcohols in the end of the six enrichment steps with C. vulgaris-fed MFCs marked in darker grey and D. tertiolecta-fed MFCs with paler grey (A) and as a time series during the electricity production assay for an MFC with C. vulgaris and U-C (filled diamonds), with D. tertiolecta and U-D (filled squares), with pre-digested D. tertiolecta and U-D (filled triagnles), with glucose and U-C (error marks), and with glucose and U-D (empty circles) (B). (DOC 59 kb)

References

  1. 1.
    Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69PubMedCrossRefGoogle Scholar
  2. 2.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43CrossRefGoogle Scholar
  3. 3.
    Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481PubMedCrossRefGoogle Scholar
  4. 4.
    Fan LT, Gharpuray MM, Lee YH (1981) Evaluation and pretreatments for enzymatic conversion of agricultural residues. Biotechnol Bioeng Symp 11:29–45Google Scholar
  5. 5.
    Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev Microbiol 7:375–381CrossRefGoogle Scholar
  6. 6.
    Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543PubMedCrossRefGoogle Scholar
  7. 7.
    Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407PubMedCrossRefGoogle Scholar
  8. 8.
    Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046PubMedCrossRefGoogle Scholar
  9. 9.
    Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355PubMedCrossRefGoogle Scholar
  10. 10.
    Zheng X, Nirmalakhandan N (2010) Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnol Lett 32:1809–1814PubMedCrossRefGoogle Scholar
  11. 11.
    Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880PubMedCrossRefGoogle Scholar
  12. 12.
    Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292CrossRefGoogle Scholar
  13. 13.
    Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103:1068–1076PubMedCrossRefGoogle Scholar
  14. 14.
    Reimers CE, Stecher HA III, Westall JC, Alleau Y, Howell KA, Soule L et al (2007) Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Appl Environ Microbiol 73:7029–7040PubMedCrossRefGoogle Scholar
  15. 15.
    White HK, Reimers CE, Cordes EE, Dilly GF, Girguis PR (2009) Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J 3:635–646PubMedCrossRefGoogle Scholar
  16. 16.
    De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304PubMedCrossRefGoogle Scholar
  17. 17.
    Lakaniemi A-M, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34PubMedCrossRefGoogle Scholar
  18. 18.
    Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555PubMedCrossRefGoogle Scholar
  19. 19.
    Karlsson A, Ejlertsson J, Nezirevic D, Svensson BH (1999) Degradation of phenol under meso- and thermophilic, anaerobic conditions. Anaerobe 5:25–35PubMedCrossRefGoogle Scholar
  20. 20.
    Ejlertsson J, Johansson E, Karlsson A, Meyerson U, Svensson BH (1996) Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie van Leeuwenhoek 69:67–74PubMedCrossRefGoogle Scholar
  21. 21.
    Logan BE (2008) Microbial fuel cells. John Wiley & Sons Inc., Hoboken, NJGoogle Scholar
  22. 22.
    Zuo Y, Maness PC, Logan BE (2006) Electricity production from steam-exploded corn stover biomass. Energy Fuel 20:1716–1721CrossRefGoogle Scholar
  23. 23.
    SFS (1988) SFS 5504: Determination of chemical oxygen demand (COD Cr) in water with the closed tube method. Oxidation with dichromate. Finnish Standards Association (SFS). Available from: (http://sales.sfs.fi/index.jsp?setLang=1).
  24. 24.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  25. 25.
    Muyzer G, Hottenträger S, Teske A, Waver C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn F. (eds), Molecular microbial ecology manual. Kluwer, Dordrecht, pp. 3.4.4/1–23.Google Scholar
  26. 26.
    Lakaniemi A-M, Koskinen PEP, Nevatalo LM, Kaksonen AH, Puhakka JA (2011) Biogenic hydrogen and methane production from reed canary grass. Biomass Bioenerg 35:773–780CrossRefGoogle Scholar
  27. 27.
    Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686PubMedCrossRefGoogle Scholar
  28. 28.
    Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39CrossRefGoogle Scholar
  29. 29.
    Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43PubMedCrossRefGoogle Scholar
  30. 30.
    Rabaey K, Boon N, Siciliano SD, Vehaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382PubMedCrossRefGoogle Scholar
  31. 31.
    Call DF, Wagner RC, Logan BE (2009) Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell. Appl Environ Microbiol 75:7579–7587PubMedCrossRefGoogle Scholar
  32. 32.
    Borole AP, Hamilton CY, Vishnivetskaya TA (2011) Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors. Bioresour Technol 102:5098–5104CrossRefGoogle Scholar
  33. 33.
    Wang A, Liu L, Sun D, Ren N, Lee DJ (2010) Isolation of Fe(III)-reducing fermentative bacterium Bacteroides sp. W7 in the anode suspension of a microbial electrolysis cell (MEC). Int J Hydrogen Energy 35:3178–3182CrossRefGoogle Scholar
  34. 34.
    Dias M, Salvado JC, Monperrus M, Caumette P, Amouroux D, Duran R et al (2008) Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31:30–37PubMedCrossRefGoogle Scholar
  35. 35.
    Sallez Y, Bianco P, Lojou E (2000) Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes: a model for the interaction between proteins and soils. J Electroanal Chem 493:37–49CrossRefGoogle Scholar
  36. 36.
    Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL (1998) Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Bacteriol 48:537–542PubMedGoogle Scholar
  37. 37.
    Carver SM, Hulatt CJ, Thomas DN, Tuovinen OH (2011) Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Biodegradation 22:805–814PubMedCrossRefGoogle Scholar
  38. 38.
    Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour Technol 102:312–315PubMedCrossRefGoogle Scholar
  39. 39.
    Laza T, Bereczky Á (2011) Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel 90:803–810CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aino-Maija Lakaniemi
    • 1
    Email author
  • Olli H. Tuovinen
    • 1
    • 2
  • Jaakko A. Puhakka
    • 1
  1. 1.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland
  2. 2.Department of MicrobiologyOhio State UniversityColumbusUSA

Personalised recommendations