Advertisement

BioEnergy Research

, Volume 5, Issue 3, pp 685–698 | Cite as

Variation in Cell Wall Composition and Accessibility in Relation to Biofuel Potential of Short Rotation Coppice Willows

  • Michael J. Ray
  • Nicholas J. B. Brereton
  • Ian Shield
  • Angela Karp
  • Richard J. MurphyEmail author
Article

Abstract

Short rotation coppice (SRC) willow is currently emerging as an important dedicated lignocellulosic energy crop in the UK. However, investigation into the variation between species and genotypes in their suitability for liquid transport biofuel processing has been limited. To address this, four traits relevant to biofuel processing (composition, enzymatic saccharification, response to pretreatment and projected ethanol yields) were studied in 35 genotypes of willow including Europe’s leading SRC willow cultivars. Large, genotype-specific variation was observed for all four traits. Significant positive correlations were identified between the accessibility of glucan to enzymatic saccharification before and after pretreatment as well as glucose release and xylose release via acid hydrolysis during pretreatment. Of particular interest is that the lignin content of the biomass did not correlate with accessibility of glucan to enzymatic saccharification. The genotype-specific variations identified have implications for SRC willow breeding and for potential reductions in both the net energy expenditure and environmental impact of the lignocellulosic biofuel process chain. The large range of projected ethanol yields demonstrate the importance of feedstock selection based on an ideotype encompassing the performance of both field biomass growth and ease of conversion.

Keywords

Biofuel Composition Enzymatic saccharification Accessibility Willow (SalixCell wall sugars 

Notes

Acknowledgements

We are grateful for financial support for this research from the BBSRC Sustainable Bioenergy Centre (BSBEC), working within the BSBEC BioMASS (http://www.bsbec-biomass.org.uk/) Programme of the centre. Further funding support from the Rothamsted Bioenergy and Climate Change Institute Strategic Programme Grant and from the Porter Alliance (http://www.porteralliance.org.uk) was provided for a studentship awarded to N.J.B. Brereton. The authors would also like to thank William MacAlpine, Tim Barraclough and March Castle for their assistance in harvesting and measuring the trees used in this work. Rothamsted Research receives grant aid from the Bio-technology and Biological Sciences Research Council (BBSRC).

References

  1. 1.
    Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25(2):135–146. doi: 10.1016/S0961-9534(02)00192-7 CrossRefGoogle Scholar
  2. 2.
    Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–370. doi: 10.1111/j.1469-8137.2008.02396.x PubMedCrossRefGoogle Scholar
  3. 3.
    Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411CrossRefGoogle Scholar
  4. 4.
    Willebrand E, Ledin S, Verwijst T (1993) Willow coppice systems in short-rotation forestry—effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioenergy 4(5):323–331CrossRefGoogle Scholar
  5. 5.
    Bergkvist P, Ledin S (1998) Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass Bioenergy 14(2):149–156CrossRefGoogle Scholar
  6. 6.
    Sennerby-Forsse L (1995) Growth processes. Biomass Bioenergy 9(1–5):35–43. doi: 10.1016/0961-9534(95)00077-1 CrossRefGoogle Scholar
  7. 7.
    Weih M, Nordh NE (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23(6):397–413CrossRefGoogle Scholar
  8. 8.
    Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44(10):3932–3939. doi: 10.1021/Es902405a PubMedCrossRefGoogle Scholar
  9. 9.
    Sage R, Cunningham M, Haughton AJ, Mallott MD, Bohan DA, Riche A et al (2010) The environmental impacts of biomass crops: use by birds of miscanthus in summer and winter in southwestern England. Ibis 152(3):487–499CrossRefGoogle Scholar
  10. 10.
    Berg A (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90(3):265–276. doi: S0167-8809(01)00212-2 CrossRefGoogle Scholar
  11. 11.
    Anderson GQA, Fergusson MJ (2006) Energy from biomass in the UK: sources, processes and biodiversity implications. Ibis 148:180–183CrossRefGoogle Scholar
  12. 12.
    Sage R, Cunningham M, Boatman N (2006) Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148:184–197CrossRefGoogle Scholar
  13. 13.
    EU RED Directive 2009/28/EC (2009). Official Journal of the European Union L 140/16 (Brussels): Belgium: European CommissionGoogle Scholar
  14. 14.
  15. 15.
    Guidi W, Tozzini C, Bonari E (2009) Estimation of chemical traits in poplar short-rotation coppice at stand level. Biomass Bioenergy 33(12):1703–1709CrossRefGoogle Scholar
  16. 16.
    Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart LB (2009) Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content for the selection of shrub willow bioenergy crop varieties. BioEnerg Res 2(1–2):1–9. doi: 10.1007/s12155-008-9028-4 CrossRefGoogle Scholar
  17. 17.
    Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45(3):820–831. doi: 10.2135/cropsci2004.0191 CrossRefGoogle Scholar
  18. 18.
    Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157. doi: 10.1016/j.tibtech.2007.02.009 PubMedCrossRefGoogle Scholar
  19. 19.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefin-Biofpr 2(1):26–40. doi: 10.1002/Bbb.49 CrossRefGoogle Scholar
  20. 20.
    Eklund R, Galbe M, Zacchi G (1995) The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresource Technol 52(3):225–229CrossRefGoogle Scholar
  21. 21.
    Eklund R, Galbe M, Zacchi G (1988) 2-stage steam pretreatment of willow for increased pentose yield. J Wood Chem Technol 8(3):379–392CrossRefGoogle Scholar
  22. 22.
    Palmqvist E, HahnHagerdal B, Galbe M, Zacchi G (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym Microb Technol 19(6):470–476CrossRefGoogle Scholar
  23. 23.
    Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzym Microb Technol 39(4):756–762. doi: 10.1016/j.enzmictec.2005.12.010 CrossRefGoogle Scholar
  24. 24.
    Sassner P, Galbe M, Zacchi G (2005) Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl Biochem Biotechnol 121:1101–1117PubMedCrossRefGoogle Scholar
  25. 25.
    Sassner P, Martensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresour Technol 99(1):137–145. doi: 10.1016/j.biortech.2006.11.039 PubMedCrossRefGoogle Scholar
  26. 26.
    Argus G (1997) Infrageneric classification of Salix (Salicaceae) in the new world. Syst Bot Monogr 52:1–121CrossRefGoogle Scholar
  27. 27.
    Trybush S, Jahodova S, Macalpine W, Karp A (2008) A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species. BioEnerg Res 1(1):67–79. doi: 10.1007/s12155-008-9007-9 CrossRefGoogle Scholar
  28. 28.
    Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of Samples for Compositional Analysis. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,Google Scholar
  29. 29.
    Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of Extractives in Biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,Google Scholar
  30. 30.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton S et al (2008) Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,Google Scholar
  31. 31.
    Selig M, Weiss N, Ji Y (2008) Enzymatic Saccharification of Lignocellulosic Biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,Google Scholar
  32. 32.
    Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G et al (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63(5):537–542. doi: 10.1007/s00253-003-1393-5 PubMedCrossRefGoogle Scholar
  33. 33.
    GenStat® (2008) © Lawes Agricultural Trust Rothamsted Research, 11th edn. VSN, UKGoogle Scholar
  34. 34.
    Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agr Food Chem 58(16):9054–9062. doi: 10.1021/Jf100807b Google Scholar
  35. 35.
    Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD et al (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17(8):808–812PubMedCrossRefGoogle Scholar
  36. 36.
    Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34(3):351–362PubMedCrossRefGoogle Scholar
  37. 37.
    Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M et al (2011) Lignin content in natural Populus variants affects sugar release. P Natl Acad Sci USA 108(15):6300–6305. doi: 10.1073/pnas.1009252108 CrossRefGoogle Scholar
  38. 38.
    Mortimer JC, Miles GP, Brown DM, Zhang ZN, Segura MP, Weimar T et al (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. P Natl Acad Sci USA 107(40):17409–17414. doi: 10.1073/pnas.1005456107 CrossRefGoogle Scholar
  39. 39.
    Selig MJ, Tucker MP, Sykes RW, Reichel KL, Brunecky R, Himmel ME et al (2010) Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol 6(2):104. doi: 10.1089/ind.2010.0009 CrossRefGoogle Scholar
  40. 40.
    Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10. doi: 10.1016/j.biortech.2003.10.005 PubMedCrossRefGoogle Scholar
  41. 41.
    Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels, Bioprod Biorefin 2:58–73CrossRefGoogle Scholar
  42. 42.
    Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–9:133–142CrossRefGoogle Scholar
  43. 43.
    Li JB, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068. doi: 10.1016/j.biortech.2006.10.018 PubMedCrossRefGoogle Scholar
  44. 44.
    Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345(7):965–970. doi: 10.1016/j.carres.2010.02.010 PubMedCrossRefGoogle Scholar
  45. 45.
    Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24(3–4):151–159CrossRefGoogle Scholar
  46. 46.
    RoyalSociety (2008) Sustainable biofuels: prospects and challenges. The Royal Society, 6–9 Carlton House TerraceGoogle Scholar
  47. 47.
    Stephenson AL, Dupree P, Scott SA, Dennis JS (2010) The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresour Technol 101(24):9612–9623. doi: 10.1016/j.biortech.2010.07.104 PubMedCrossRefGoogle Scholar
  48. 48.
    Brereton NJB, Pitre FE, Hanley SJ, Ray MJ, Karp A, Murphy RJ (2010) QTL mapping of enzymatic saccharification in short rotation coppice willow and its independence from biomass yield. BioEnerg Res 3(3):251–261. doi: 10.1007/s12155-010-9077-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Michael J. Ray
    • 1
  • Nicholas J. B. Brereton
    • 1
    • 2
  • Ian Shield
    • 2
  • Angela Karp
    • 2
  • Richard J. Murphy
    • 1
    Email author
  1. 1.Division of Biology, Faculty of Natural SciencesImperial College LondonLondonUK
  2. 2.Centre for Bioenergy & Climate Change, Plant & Invertebrate Ecology DepartmentRothamsted ResearchHarpendenUK

Personalised recommendations